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UNIT IIIE

TRANSPORT PROCESSES

Conserved guantities are transported by mobile carrier particles. These include gas molé—
cules, free electrons, phcnons, and photons whose speed distributions and average speeds
are developed in the unit. The equilibrium flux of the mobile carrier particles is rela-
ted to their mean speed and particle density., Two transport limits are identified: the
limit dominated by particle-particle collisions, the continuum regime; and the limit dom-
inated by wall-particle collisions, the free particle regime, The Xnudsen number is in-
troduced to discriminate between the two regimes. Photon heat transpert through a lew
density gas is analyzed as an example of free particle transport. The result of this
analysis is an expression for the limiting black body emission from a surface, the
Stefan-Boltzmann law,and an introduction to the concept of surface absorptance and emit-
tance. Molecular heat and momentum transport th}ough a gas are analyzed as examples of
continuum transport. The result of this analysis is a prediction of gaseous thermal con-
ductivity and viscosity. Heat and charge transport through a solid are analyzed as a
second example of continuum transport. This yields a qualitative description of the de-
pendence of thermal conductivity on temperature in insulators and metals, as well as a
description of the temperature dependence of electrical conductivity in metals and semi-
conductors.

Objectives

1. Determine the mean, most probable, and rms speeds of gaseocus molecules,
free electrons, phonons,and photons for given equilibrium conditiecns.

2. Determine the probability that a gaseous particle will have speeds above or
below a specified speed.

3. Specify the mean free path, mean free time, or Knudsen number of molecular
gas particles under specified conditions.

4. Ewaluate the maximum possible, or black body, photon energy flux at a spec-~
ified temperature,

5. Interpret the distribution of black bedy radiation, Planck's .law, to eval-
uate the relative emission at different wavelengths.

6. Determine the viscosity or thermal conductivity of a molecular gas.
Interpret the effect of temperature and pressure on these properties.

7. Describe the temperature dependence of the thermal conductivity of metallic
and nonmetallic solids, Discuss the effect of impurities, defects, and annealing.

8. Differentiate between electrical insulators, conductors, and semiconductors, Dis-
cuss the effect of temperature on electrical conductivity in cach of these materials.

9. Determine thermal conductivity from the electrical conductivity of a metal using
the Wiademann-Franz law. Discuss the authenticity of this result for specific cases.

i



R

CONTENTS

[. INTERPARTICLE FLUX Z
A, 5Speed Distributions z

8. Interparticle Flux 8

C. Interparticle Collisions ; 9

II. FREE PARTICLE RADIATION TRANSPORT 12
III. CONTINUUM TRANSPORT 16
A. The Transport Properties of Molecular Gases 19

B. Transport Properties of Solids 20
APPENDIX ITIIE-A  CONTINUI™M DIFFUSION -
TABLE IITE-1 EXPONENTIAL INTEGRALS 31
TABLE IIIE~-2 COLLISION CROSS SECTIONS 31

ii




o T

T
e .

L

oy

¥

[UIL FEFARE I

UNIT IIIE

TRANSPORT PRCCESSES

Whenever a gradient in a thermodynamic potential exists between one region and ancther, it

1 petermining the

induces heat, work, or the movement of matter between the two regions.
rate at which these ‘ramsport processes proceed under given conditions is a ceatral prob-
lem in the practice of each of the various fields of engineering. Specifically, tempera-
ture is the potential for heat transport, veoltage is the potential for charge transport
(i.e., electric current), pressure is the potential for the bulk transport and concentra-
tion is the potential for the transport of a specific species of matter, and velocity is
the potential for the transport of momentum. In all of these processes the transported
quantity is carried by mobile "ecarrier' particles. Different particles act as carriers

for one or more transport processes to varying degrees in different substances.

Molecules {or atoms) are relatively mobile in liquids and gases. Thus they act
as the ptincipal carrier for heat, mass, momentum, and species. {Electric current
is transported by iomized moclecules.,} In selids, lattice points have very lim~
ited mobility. Thus the molecules or atoms that occupy these sites are carriers
only in the very limited diffusion processes. >

Free Electrons are the principal carriers of electric current. In condensed phase
conductors, the highly mobile free electron gas is an important carvier of heat as
well as charge.

Phonons Latrice vibrations in a condensed phase result in the generation of
acoustical waves. This mobile phonon gas is a contributor to heat transport im
condensed phases.3 In liquids it is often more important than heat transport due
to molecular motion.“ However, in good conductors, phonon transport is often
negligible in comparison to free electron transport.

Photons The mobile photon gas occupies all space. Its net contributien to heat
transport is dependent on the presence and mobiliry of other carriers.’ In their
absence, as in a vacuum, photon heat transpert is predominant.

If transport effects are to be predicted by microscopic means, one must determine at
what rate the proposed carrier will move unimpeded in a given direction, how much of the
transported guantity it would carry with it, and how frequently the particles would under-

go collisions that inhibit the transport process.

lEach of the intrinsic, fundamentally intensive properties is a thermodynamic poten-
tial, see definitions 12 and 16, Unit IA.

“There is very limited momentum or mass transport within a solid.

3¥either phdtons nor phonons contribute to mass (or species) transport since they
are massless. Their contribution to momentum transport i1s usually very low when compared
to molecular transport.

LRecognize that we are comparing to molecular transpert within the media, not to
energy carried with the bulk motion, convection.

1



2 TRANSPORT PROCESSES

I, INTERPARTICLE FLUX

Each transport process is induced by a gradient in its driving potential, Thus, when

a system is in an extensive equilibrium state there is no net transport. This does not
imply, however, that there is no motion of the mobile particles that would become the
carriers if transport were initiated. Indeed, these carrier particles typically tran5~
port at the same rate in any specific direction that they do during a net transport pro-
cess. But when there is mo potential gradient, this transport flux is balanced by an
equal flux in the opposite direction. The isotropic counterbalancing fluxes prescribe a
maximum for each potentifal transport flux, No matter how large the gradient, the flux
cannot exceed this limit. The magnitude of the limit can be determined for carrier par-

ticles of known speed distribution.

Al Speed Dbistributions

In Sect. IIIA of Unit IIIC, we considered the translational mode of molecular gases.
This development began with a description of the energy states in terms of their quantum
numbers, eqn. LITA-8, The energy of these states corresponds to that of linear transla-

tion. Therefore, each state defines a particle velocity.S
2 * *-2
h 2 2 2 m 2 2 2 m Vv
= + = W+ v+ V) =
fer T g %203 @7 +om+om) = VoY) 2

Since the quantum numbers are integers, the energy states and their corresponding veloc-

ities are quantized. But we had already comncluded that the translational mode alwavs
satisfies the high temperature limit, T >> etr; thus the velocity distribution can also
be approximated as continuous. The velocity distribution is obtained directly from eqmn.

ITIC-1b (see the following development).

Example 1. Use the distribution of independent translating molecules over their acces-
sible energy states, eqn. ITIC-1lb, to derive an expression for the distribution of gas-
eous molecules as a function of velocity.

The partition function for the translational mode was derived by integration over the ac-
cessible energy states in Exmp. 4 of Unit IIIC., Using this result exprassed in terms of
particle mass and total volume the probability that a particle will be in the n, m, 2
state is -

*
8m V2/3kT

_[hz(ﬁ.zﬂnz-{—nzzjl
-e(g,m, ) /kT h3

/2

[« (Q, » My n) = *
tr - V(2mm kT)>

~

SVelocity is not completely specified by an energy state, A state, €(,m,n), may
correspond to positive or negative direction for each of the three velocity components,

2 2
v = * (ﬂ_’;h...__‘q')
x n v2/3
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INTERPARTICLE FLUX

The transformation of this distribution to velocity must satisfy the conservation of
probability condition

=g g [ o (mm dbdman =/ [ [ o (V,V V)4V av dv,

0 - =D -0

-

Then substituting for £ in terms of Vx

2 * * 2 2/3 S 2/
e RSP R L) dz=i—<_>;¢}dv
8m V X h X h X

and L =0, V =0; &k =p=, V =+,
X X
Similarly for m and n in terms of V_ and V 2 we have
h3 @ o ® 2” (v +v +v3 * 2 2/3 3/2

1= ———s [ ] dv_ dv_ av
verm kT) ' 0 0 0 * ¥y =
PN} = (v2+v2+v2)

- -23-(__.“1_) fm {m {m av_av dv,

where the factor 1/23 comes from extending all three limifts from zero to —=. The inte-
grand of this probability integral is the velocity distribution, g (V). It can be ex-
pressed in the simpler form of eqn. IIIE-1 by substituting R = R/M = ¥ k/¥ m*,

In a staticnary gas the probability that a particle P{U) .
will have the velocity V is iow
_ gVR/2RT
pV) = =75 (ITIE-1)
(2TRT)
T
A sketch of the distribution in two of its three direc- <_high
tions is shown in Fig. IIIE-1. Notice that the most /4547 V;=
5 -3/2

probable velocity is zero; o = p(V = 0) = (2rRT) /

The velocity distribution is symmetric with respect to

the origin. Thus, the average of any odd function of v,

velocity over the eantire velocity space is zero. Fig. ITIE-1. Velocity Distribution
This supports our expectation that there is no net in a Molecular Gas
transport within a stationary gas in equilibrium.® In that respect it is useful to ignore

the direction of individual particle motions and consider the speed distribution V = VI

8The distribution in an equilibrium gas that is moving with velocity Go is readily
shown to be

] -@-7 )% /28t
e(V) =

(ZWRT)B/Z

This distribution is symmetric with respect to vo. And there 1is still no molecular trans-
port except that contributed by the mean particle motion, viz., convection.



4 TRANSPORT PROCESSE

2
2 -V°/2RT
p(vy = AWV e 373 (IIIE-2)
(27RT)

Exercise 1. Express the velocity distribution im a spherical coordinate representation of
velocity space (0 < V <o, 0 < § < T, 0 < ¢ < 2m) and integrate over all directions to
obtain the particle speed distribution. :

The speed distribution is sketched in Fig. IIIE-2.
It is not a symmetric curve and its maximum, the most
probable speed, is not zero.

V= YIRT (ILIE-3}
mp .
+ Exercise 2. Differentiate the speed distribution,
eqn. IIIE-2, to derive eqn. IIIE-3 for the most
probable speed.

f:(V)

Exercise 3. We had earlier noted that the most
probable velocity is zere, Fig. ITIE-1l. We now
find that the most probable speed is not zZero,
Fig. ITIE-2. How can the highest probability be
simultaneously a stationary and a moving particle?

Fig. IITE-2?. Speed Distribution in
a Molecular Gas

The mean of any function of speed, ¢(V), is defined by

@ f $(V)p (V)dV (I11ID-4)

This definition is applied to determine the average speed as well as the average of the
square, cube, and other multiples of the speed that are of physical interest.

Example 2. Use the definition of the mean and the integrals of Table IITE-1 to determine
the average speed of independent molecules of a molecular gas,

The average speed is defined by

z [ ve(v)dv
0

To evaluate the required integral, we express it in terms of the dimensionless argument

(xz = V2/2RT, dx = dV/¥2RT) and use Table ITIE-17

. o 2 oo 2 L
v = 41!’3/2 I v vz e-V /ZRTdv - {”73/2 (ZRT)z I K3 Bt dx = At._RT) ( ) [SRTJ
(2TRT) 0 {2TRT)

Exercise 4. Determine the average kinetic energy of the particles in a molecular gas,

- * , ; ;
€e = M V' /2. Verify that the result is the same as the translational mode's contribution
to the internal energy of perfect gases,

In Exer. &4 the average of the square of the speed was determined. The square root of this

parameter, the roct mean square speed provides an energy~based measure of average particle

‘The parameter x(= V//2RT) is often called the molecular speed ratio.




A o s

e

INTERPARTICLE FLUX

speed. Thus we have defined three measures of average particle speed: the wost probable,

the average, and the root mean square or rms (Exer. 2, Exmp. 2, and Exer. 4, respectively).
— S

- 21
y_ = YIRT v= /2 v = (v']® = /3RT (TTIE-3,5a,5)

mp m Tms
These averages are not far apart numerically and are of identical form. Each is directly

proportional to the square root of temperature and inversely proporticnal to the square
root of particle molecular weight.

Exercise 5. For purposes of comparison determine Vi, and Vipe for the common, and not sSo

common, constituents of the atmosphere at 300 K: nitrogen, NZ’ water vapor, HZO’ helium,
He, and gasoline {(octane) fumes, CBHIS'

The varicus average speeds specified by eqn. IIIE-3 provide one measure of the character
of the molecular speed distribution. A second approach is the specificaticn of the frac-
tion of particles that have speeds within a certain range. Table IIIE-1 inecludes a tabu-
lation of the probability integral up to specified dimensionless speeds, x* =V*/Jf§_.

*
The fraction of particles with speeds between zero and vV is

&
« v , V//RT 2
p(C+V) =/ pWdv == x“ e & dx (I11E-6)
0 V7 0

Use of this functionm is illustrated in the following exercises.

Exercise 6. Determine the percentage of oxygen molecules at 600 X whose speeds are abcve
1000 m/s.

7

Exercise 7. What fraction of gaseous molecules travel at speeds between vmp and Vr R
T I

The procedure used to derive the speed distribution of molecular gas particles can
also be applied to the free electrons of a metallic solid. Atnormal temperatures free
electrons are distributed over their energy levels in a manmner that is very similar to
their distribution at absolute zero, T << BF {see Fig. ITID-4). Therefore, a good approx-
imation to the free electron speed distribution at all practical temperaturaes is the dis-

tribution they exhibit at absolute zero.

Example 3. Exmp. 8 of Unit TIID used the distribution of free electrous at absolute zero
to determine the value of the Fermi level at absolute zero, sﬁ. Transform this energy
distribution to obtain a speed distribution for free electrons at zero temperature.

At absolute zero the number of free electrons with energy £ 1is
Zm* 3/2 1

e
n_ () =g (e} = !mV(——) z

el T=0 el h2

e<el >eo
i 8 erep

Alsc the total number of electrons was shown to be

and n

o 372
N - gmv 2 €03/2
el 3 h2 F
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Substitution gives an expression for the probability of an energy level

n__(g) x
- el 7 3 g? -
Pop (€ = T2 373 0 018 =0

(EF)

A speed distribution is obtained by substituting
* *
m V2 m V2
[ __e F
2 F 2

inte

Ans. 1. To go from Cartesian to spherical velceity cocordinates, we express dv, 4dv, dv,
=+V< sin & do d¢ dV where 0 < V < @, 028 <, and 0 £ ¢ £ 27, Then the probability
integral is

A _
=, [ [ o(¥)v? sin8 d¢ ds av
0 0 0 .
The speed distribution is obtained by integrating the velocity distribution over 8 and ¢.
27 07 .
This gives f f $ind d¢ d8 = 47, So
o 0 2
o (V) = 4WV2 o (V) = ———iﬁL§7§ V2 e V/2RT
(27RT)
Ans. 2. The most probable speed is determined by settin
d 4r d [2 -v2/arT)]  4n oV /2RT vy
v W = 7z av |V ® = 77 QT Y B
(27RT) (2wRT)
This gives V2 = 2ZRT, Vv = ¥IRT,
mp mp

ans, 3. The velocity distribution specifies directicn as well as magnitude of particle
translational energy. It corresponds to the probability of each specific energy state.
The speed distribution specifies only the magnitude of particle energy. It corresponds
to the probability of each energy level. There are very few states of low energy. Thus
the probability of the low energy states (velocities) can be relatively high even while
these levels (speads) are not probable., The most probable level (speed) is achieved when
the increasing numbers cof states per level can no longer compensate for the decreasing

probability of the higher enerpgy states,

Ans. 4. As defined, the average kinetic energy requires a determination of the average
speed squared. Transforming to dimensionless form, we find

@ o 2 o 2
- - 5/2 4 -
2. [ v ey - *———31375 [ vAvE TV/RT ~———31375-(2RT) N R
0 (27TRT) 0 (2TRT) 0
- b (2RT) [_3__'/;} = IRT
3/2 8
(m) .
- ko~ ) * *
Thus, since R = R/M =k/m , & =m V°/2 = 3 KT/(2m ) = (3/2) kT. And the toal energy

for a mele of molecules is ke . 3 3

Ue T Ny fre T 3 NuKT = 7 RT,

which Is the same as that determined for the translational mode in Unit IIIC,.
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gy (e)de = pel(V)dwm =

S5

and o . (V) = 0,
el V>VF

In Exmp. 3 we derived the speed distribution for free electrons at zero temperature,
This result is a good approximation for the electron speeds at all practical temperatures

in a solid, T << §

F
VZ 2k9
PV oo 35 _1(V1 =0 where V2 ( = } (IIIE-7)
SVF VF V>VF m,
Since the approximate distribution is independent of temperature, the most probable,

average, and rms speeds of free electrons are constant for each substance.

~ 3 /5 .
.V =V = — = —_— -
0 . Vo=V Vo = Ve (IIIE-8a,b,c)

8The highest probability is that at the Fermi level (see the figure of Exmp. 3).
But the probability curve does not have zero slope at that point.

Ans. 5. The variation in the various average speeds are due to different molecular

welights: MNz = 28.01, MHZO = 18.02, MH = 4.00, MC H = 114.2., Thus for nitrogen
V = V2RT = [2 (83“) J/(kgK)- 300 K+ 1 kg m 213 )-J 422.0m/s
mp 28.01

and V = //z V = 516.8 m/s
rms 2 mp

Slmllarl} Voo and V... for the other molecules are respectively: Hz0 - 526.3 m/s and
644.4 m/s, He - 1117 m/s and 1368 m/s, CgHyg - 209.0 m/s and 256.0 m/s.

Ans. 6., For the conditions specified
* v* 8314 1000 w/s - 1.79
|:2 3200 13/ kg K) *600 K- 12. kg m /(J s ):|
Interpolating from Table TIIE-1, we find [ x° e * dx = 0.401. And

*
X

* _
PO > x) =] x%e®dx=-%-0.401 = 0,906
T 0 ned

The probabilitv‘is that 9.4% of the molecules have speeds above 1000 m/s.

Ans. 7. In dimensionless farm 3 = = = =
|ans. 7 *np mp/vZRT Land x_ =V _ /V/2RT = /3/2 = 1,225,

Thus, P(0 - x ) = 0.1895 and P(0 - x _ ) = 0.2687. So (26.9-19.0) or 7.9% of the

particles are between these speeds.
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Exercise 8. The average free electron energy was determined in Exmp. ¢ of Unit IIID to

be %el = (3/5)5;. Verify that this result is consistent with eqn. IIIE-7b.

Exercise 9. Use the distribution of free electrons and the definmition of a mean, eqns.
ITIE-6 and 4, to determine the mean free electron speed, eqn. IIIE-7b.

Exercise 10. The Fermi temperature of the free electrons of solid copper is 8,44 -lO“K,
see Exer. 17 of Unit IIID. Determine the average, rms, and Fermi speed of these elec-
trons.

Now that we have considered the speed distribution of molecular and free electron
gases, the simplicity of the distribution applicable to photons and phonons is readily
appreciated. Each electromagnetic and acoustic wave travels at the speed of light and
sound respectively.

ppht(V)

i
<

1 ppht(V) {IIIE-9a)

|V#c
pPhn(V)'V=c " Dphn(V)\V#c
s s

Thus their most probable, mean, and root mean square speeds all have the same value. For

=
|v=c

0 (IIIE-9b)

photons and phonons, respectively, the values are

vV =U=v =c vV =7V=v = ¢ (I1I-10a,b)
mp rms mp rms s

In the following section we use the speed distributions developed in this section to

determine the maximum possible transport flux.

B. Interparticle Flux

The preceding section considered the motion of the four principal transport carriers.
We found that their speed distributions varied substantially. However, all of these gases
share one characteristic— the particles move in random directions. One result of this
isotrepicity of particle velecities is that there is no net transport when the carrier gas
is in equilibrium, Another is that all of the gases have the same proportion of their
collective speeds directed positively in any single direction,
Example 4. Determine the average velocity component of equilibrium gas particles con-

triburing positively to transport in any single direction. Show that this average can be
expressed as a fraction of the mean speed within the isotropically translating particles.

If we represent velocity in spherical coordinates 0 £ V < ®», 0208 =2mm 0c<4¢ 5 27,
the projection of the general velocity vector in the direction § = 0 is V cosg. The aver-
age of these components in the positive sense is determined by restricting the integral
limits on 9 to 0 £ & < /2. Thus, the average positive velocity component is written
symbolically as

" 2t wj2 =

[ J [ Vcos 8 a(v,6,0)V sin 6 dV de do
Teosg =20 0
'pos = 2n /2 = 2
[ f [ o(v,8,0)V" sin 6 dV do do
c 0 0




e R o L

Qamen W

INTERPARTICLE FLUX 9

Note that the denominator is not the total probability but the probabilicy of positive
velocicies, 0 £ # < v/2, p(V,8,¢) symbollizes the velocity distribution. However for the
for isotropic distributions it is independent of direction p(V,9,9) = pya1lV). (The
subscript vel emphasizes the fact that this is an isotropic veloeity distribution, not a
speed distribution.} As a result the integral ratio simplifies to

am m/2 & 2
de¢ cos 8sin 3 d6 v Ve {V)dv /L
, é é é vel Zrtaﬂ b
v cos |pos 27 /2 > " ZW(l)V )
[ a8 [  sineds [V _ (N)av
0 o 0

The solution of Exmp. & showed that the average positive velocity component of any
tupe of translating particles .in equilibrium moving in a single direction is V/2. Fur-
ther, since these velocity distributions are isotropic, half of the particles will have
positive velocity components and the other half negative. Therefore, the rate at which
carrier particles move in a single direction per unit area time in an equilibrium gas is

n n v
T T
o' = G%@ v cosB]pos =2 (IIIE-11)

4

where n, is the number of carrier particles per unit volume, or carrier sarticie density.
The particle flux directly governs the marimm rate of diffusion of any specific type of
particle. Since each transported quantity is carried by a flux of carrier gas particles,
n'" also sets an upper limit on each transport process equal to the mean value of the
transported quantity per particle times &', see below., However, rather than substitute
directly to determine the maximum flux limits, we first consider those processes that
reduce transport rates below their respective maxima.

Transport can only occur at its maximum rate when the carrier particles are unim-
peded in their motions. Tasofar as the carrier particles collide with one another or

with other particies present within the transport space, transport is reduced below this

maximum.

C. Interparticle Cellisipns

A carrier particle has undergone a collision when its momentum is altered by par-
ticles or barriers within the system. Collisions with the boundaries of the system—nre
called particle-wall collisions. Collisicn between particles within the system are par-
ticle-particle cellisions. We begin our discussion with the consideration of particle-
particle collisions. Obviously, particle-particle collision frequencies will depend upon
the densities of the colliding particles, the speed with which they move, and the range
and distribution of the forces acting between them. The last of these characteristics of
the colliding particles is known collectively as their collision crogs section, In gen—

oral collision cross section is dependent on the type of particles that colllde, the mag-
nitede and relative directions of their momenta, and their angular orientation at
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incidence. To simplify our discussion we will model collision cross sections as though

they were constant.

This 1s a reasonably gocd approximation for collisions between molecular gas par-

ticles, It treats the particles as though they are hard spheres of radius r+.9 Hard

. . + +
spheres collide when their centers approach one another to the distance d° = 2r . Thus

the effective cross section for collisions between like and unlike hard spheres is

+ + 2 +
g = =
(d ") T19
Values for the hard sphere diameter and collision cross

molecules are listed in Table IIIE-2 at the end of this

2
+ +
174
l—_ =
2
section of a number of atoms and

unit. The frequency with which

collisions occur and the average distance between them can be approximated by studying the

motion of a fictitious "collision" particle whose radius equals the molecular diameter.

‘ +
Example 5. Determine the frequency with which a particle of radius 4 moving at the mean

particle speed V would encounter statiomary point particles of number density n,. What
would be the average (or mean free) time and average distance (or mean free length) be-
tween these encounters?

The model process for this determimation is shown at right.

The moving particle encounters the stationary point particles I -
at a frequency equal to the number of points per unit time - LS} o
within the cylinder through which it passes. '

+ -
vV =37 Vn
c v

5The hard sphere radius can be defined as the minimum in the pair interaction paten—
tial, see Unit ICS.

iAns. 8. The rms speed is defined in terms of the average energy. Thus,
® 2 b

3 X
a 2 . LR . L.
ELY 2+(3/5)eg K (3/5)m_, v ) [_3-)2 v
Vems | = B * B % 5 F
m m m_2
e e e
. = 3 ' 2 3
Ans. 9. Voo = Ve Mav == [ vviav=zv
0 Ve 0 .

Ans. 10. From its definition, with E; = kBF

%
= 1,60 -lOﬁm/s

E -
v =(2ke'€) . [2 - 1.380 - 107231/ (elect K) - B.44 - 10“1{]

F m: 9.109 » 10" lkg/elect

-

3 _ . 6 . 1n0
Vel = VF = 1.60 + 10 m/s 1.20- 10 w/s
3%

3 % 6 6
Vrmsj,el= (E] VF = ('5') = 1,60+ 10 m/s = 1.24 10 m/s

3
.4_
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The average cime between these encounters is the reciprocal of the frequency T, = v;l

= (¢t v Ny 3=l The average distance between encounters is the product of the tlme be-
tween encounters and the particle speed Rc =7 V— (* nv)"1

Exmp. 5 considered the motion of am oversize collision particle moving at the mean par-
ticle speed through a stationary gas of point particles. This is the appropriate model
for the consideration of collisions between relatively fast and relatively slow moving
particles. Examples of this type include: photons colliding with molecules in a gas or
phonens in a solid; phonons colliding with defects or lattice points in a solid, free

electrons colliding with phonons in a metal; fast neutrons colliding with fuel or moder-

ator nuclei in a nuclear reactor. The mean free time, T 1-2° and mean free path, hc 1-2°
> »
for collisions between the fast particles, 1, and slow particles, 2 are
T = L A R S {(IIIE-12a,13a}
¢,1-2 o v oa c,1-2 c+ n ’
12 1 "wv,2 12 “v,2

Exercise 11. A nuclear reactor functions by slowing down the fast neutrons produced in
the fission reaction by sequences of epllisions with the "mederator." If graphite carbon
is employed as the moderator, its cross section for neutron scattering is approximacely

4 *10-2% cm?. Estimate the neutron mean free path in a graphite moderator. ({Graphite
density is about 1.6 g/em?.)

A determinarion of the mean free time and mean free path for collisions between iden-
tical particles requires that relative particle speeds be accounted for. The result of
such a development (see Ref.4, pg. 344) is

1 . 1

¢ Y2 a an “ V2 o

-

The mean free time and, especially, the mean free path are important in the classification
of transport processes. If the distance between the particle-particle collisions is
large in comparisen to the average transport distance in the system, then particles move

relatively unimpeded throughout the container. Such processes are Aominatad by wall-

particle collisions and transport within this regime is called free particie tramsport.

In the opposite extreme when the mean free path is small in comparison to the contadiner
size, then transport processes are dominated by particle-particle collisions. This trans-—
port regime is called the contimaai. Thus a formal classification of transport regimes

is obtained by comparing the particle-particle mean free path to a characteristic length

parameter of transport, most formally L = V/A. This ratio is called the Knudsen number.

-

Kn =

A
c
T (I1IE-14)

. L s . -2
In molecular gases the continuum regime is usually identified as Kn < 10 7, and the

free particle regime as Kn > 10, the range between them being a transition regime. This
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classification scheme can be used in conjunction with eqn, ITIE-13b to determine which
flow regime is present under given conditions. When the gas falls within the perfect gas
region, eqn. L1I-13b is adapted to this specific case by substituting n, = p/kT. This
gives Ny o= kT

© V2adp

Exercise 12. Determine the mean free path and mean free time for nitrogen gas at STP,

(IIIE-15)

Example 6. Tf vacuum insulation is to be at all effective, the pressure level must be be-
low that within the continuum region. It is desirable that it be low encugh te establish
a free molecular transport regime. For a thermos bottle using nitrogen gas and a 1 cm
separation gap, determine the threshold (i.e., continuum limit) pressure level and desired
{(i.e., free molecule limit) pressure level for operation at room temperature (300 K),
liquid nitrogen temperature (77 K), and liguid helium temperature (4.2 K).

The required pressure levels are established by the Knudsen number limits, 1(31-2 and 10.
The corresponding pressures are established from eqms. IIIE~14 and 15,

- kT
Kav2 L G+
From Table IIIE-2, agz = 44,2 (R)Z. Thus at 300 K, the threshold pressure is
1.380 - 10723 J/(part K) - 10 %bar m°/J - 300 K A
= = 6,63+ 10 bar

P - - ) _ @
L1077 1 cn- 44,20 % - 10720 w2 a)? + 10%m/em
A similar calculation shows that the free Earticle limit pressure is py = 6.63 lO—Tbar.
At 77 K, p; = 1,70 » 10" %bar, py= 1.70 * 10" 'bar; and at 4.2 K, p; = 9,28 - 10~%bar, p, =
9.28 - 10" %bar.

The preceding exercises demonstrate that a combination of low pressure and/or small phys-
ical dimensions are required to establish the free particle regime in a molecular gas,
These conditions are present within most high vacuum systems and on the extarior of extra-
atmospheric vehicles. However, an overwhelming majority of melecular gas applications are

within the continuum flow regime,

Il. FREE PARTICLE RADIATION TRANSPORT

The rapidly moving photons are an important means of heat transport through gases.
Photon-photon ceollisions are normally overshadowed by photon-molecule scattering, - Hence,
it is this process that prescribes photon mean free paths., Examining the form of eqn.
IITE-i3a, we would expect shorter photon mean free paths in higher density gaseous media,
This 1s indeed the case. However, the greatest variation in photon mean free paths is
associated with variations in the collision cross section. Photon-molecule collisions are
electromagnetiz in character. Thus dipole molecule gases (e.g., HZO’ C0) and molecules
that can be easily distorted into dipoles {e.g., COZ) have far bigger cross sections for

photon collisions than monatomic or homonuclear diatomic molecule gases. Since the prin-

c¢ipal constituents in air are homonuclear diatomic, air is relatively transparent fo
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electromagnetic radiation. That is, photon mean free paths are long and photon transport
through air is well approximated by the free particle limit,!?

Photon energy is independent of photon speed. (All-photons travel at the speed of
light.) Therefore, the equiiibriwn rate of thermal energy transport by a photon gas is

simply the product of equilibrium photon flux, ﬁ;ht’ and the mean energy per photon,

11
S he

c
" =" s o _Yopht -~ _ v,pht -
®ont ~ “pht pht N A (ITTE-16a)

When we substitute the expression for the photon energy demsity developed in Unit IIID,

eqn., IIID-6b, we obtain the Stefan-Boltamann Low

. . 4
" - n = T -
Epht ab(T) fug (IIIE-16hb)
where o is ‘the Stefan-Boltzmann constant
5. 4 - -
o= 2K 5 668+ 1070w/ (%) = 1.714 - 1077BTU/ (he £62R%)
15 h3c2

The Stefan~-Boltzmann law represents the rate at which photons will be moving in all diree-
tions within an equilibrium enclosure. But heat transport only occurs when temperature

differences are present, that is, for nonequilibrium conditions.

Radiant Exchange within an enclosure containing an "optically thin" gas is gov-
ermed by photon-wall collisions. WNet transport results from the different rates
at which surfaces emit and absorb photons. The maximum rate at which a surface
can emit radiation is set by the Stefan-Boltzmann Law. A surface that emits at
the maximum rate is called a black body (or black surfacel). Since photon trans-
port occurs within all media corresponding to their equilibrium temperature, a
real surface emits at less than the black body rate in proportion: to the rate

at which photons approaching the surface from its interior are reflected back
into the body. This percentage is a property of the surface called its amit-
tance (cr emissivity).

LiNor only are photon-~molecule collisions limited to certain specific molecules, they
are strongly concentrated at certain specific frequencies. The effect of these preferred
scattering and absorption bands are evidenced by two natural phenomena. The earth's blue
sky is a result of atmospheric scattering of the "blue" from the solar spectrum, Thus the
blue photons are incident from all directions, not just from the small solid angle at
which the sun is observed. The red sunset is caused by selective absorption of the- solar
spectrum excluding the red wavelength by the far thicker atmosphere when solar radiation
enters tangentially to the earth's surface.

Thermal radiation transport refers to the transport of energy due to temperature
differences, radiation heat tramsport. It excludes the transport of radiation generated
by mechani-al means, for example, by radioc, TV, or microwave transmitters or by a laser.
This is radiation werk transport.

Ans . 11.} B Mc 12 g/ (g mol) = 3,1 cm

. - 2
n-c¢ ¢ A 4,10 24cmZ/part- 1.6 g/gm3' 6.023 - 10 3part/(gnml)
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Similarly, phocons incident on a surface from its exterior will either be re-

flected, or will be tramsmitted into the interior and subsequently absorbed.

The proporticn that is absorbed is also a property of the surface called the

absorptance {(or absorptivity).

Implicit to the praceding discussion is the assumption that photon transmission
through the enclosure walls is unlikely; that is, the walls are assumed to be "optically
thick," Photon mean free paths are relatively short in most solids.!? The free electrons
of a metallic solid have especially large cross sections for photon callisions, Thus
metallic solids are seldom transparent and the probability of photon reflection at the
surface is high; metals have low emittance and absorptance coefficients.!? The bound
electrons of nonconducting solids are not as efficient at scattering photens. Thus non-
conductors are much more likely to be semitransparent and their emittance and absorptance

properties may approach unity.l2

Exercise 13. Determine the magnitude of black body radiant emission at 30Q, 1Q00, 3000

and 10,000 K.

Exercise 14. A galactic probe coasts at speed with its engine shut down, far from any

appreciable radiant source. It expends energy at a rate of 450 W to run its systems.
After use, this power is dissipated from a radiator whose area is 2m®. The radiator is
constructed of aluminum because of its light welight and high thermal conductivity, Its
uncoated emittance is 0.05. A design alternative calls for coating the radiator with a
noncoaducting “nearly” black coating with an emittance of 0.95. What will be the steady
state temperature of the radiator for the two conditions? What is your recommendation?

In Unit ITID the photon energy density was obtained by integration of the wavelength
distribution of photon emergy— Planck's Law, equ. IIID-5. When this expression is substi-
tuted into eqn. IIIE-16a, we obtain the wavelength distribution of black body radiant
emission., This expression is also called Planck's Law

u (Te 2 1

. 2rhe
e A(Ty = —¥2 = (ITIE-18)
b 4 2 [, (he/3kT)_ ]

L2photon transport through a solid should be modeled as a continuum, Its contribu-
tion to net transport is usually much less thanr that of the phonons and/or free electrons
and is, therefore, neglected.

13The process of transmission and subsequent absorption of a photon incident on the
surface from the exterior is the reverse of that for transmission of a photon incident on
surface from the interior, viz., emission. Thus the emissivity and absorptivity are
identical at every point for photons of the same wavelength traveling at the same angle.

+ -]
Ans. 12. From Table ITIE-2, O, = 46.2 A%/part. Thus
2
-23
v - 1.380210 _g(/}(gagg K) * 300 K - - 6.54 - 1078,
© VZe4a.2 A% 1070787 ¢ 1,013+ 10°N/m
and
% A
s BRT%_ 8 (8317 2 c _ -10
v = ( T J = [ﬁ' [28_01)3/(kg K) + 300 K] = 476 m/s T 5 " 1.37 =190 s
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This function has the same form as that for the energy density, see Fig. IIID-1. There-
fore, the position of the maximum radiant emission is determined from Wein’s Law derived

in Unit IIID.
Apexl = 2898 um K (IIID-6)

<

Example 7. Measurements of the wavelength distribution of the solar radiation incident

on the outer fringes of the atmosphere indicates that the sun’s black body emission tem-—
perature is 5600 K. The total solar constant is 1330 W/m2, Independent celestial mea-

surements have shown that the average distance from the sun to the earth is 150 - 10° km.
Use this data to deduce the diameter of the sun.

The sun emits uniformly in all directions at the total rate,
QS = Aség(TS). This total emission is diminished in inten-
sity as it spreads over the increasing area spherical surfaces
that it passes through at increasing distances from the sun,
The total radiation crossing each larger radius sphere is the
same. Finally, at the earth's orbit, Tope We have

2 . 2

= == b ]
Q5 TTds eb(Ts) Tr(Zrob) qsolar
or EY
41-2 a" 8 .2 2'|b2
4 = _ob “solar _|_4:(1.5010"km)" - 1330 W/m - 1465 10%%n
s 01! 5.668 - 107w/ @%K") » (5600 ©Y

The eyes of earthlings are sensitized to perceive radiation above a threshold inten-—
sity in the wavelength range from 0.4 to 0.7 um that spans the peak emission from the sun.
Our vision is based on observing differences between the partial reflection of the avail-
able natural light within the visible spectrum. An object is greem because it preferen-
tially absorbs radiation from other colors, reflecting a combination of wavelengths that
the eye perceives as a particular green hue. For an cbject to be wisible as a result of
its own emission, it must be hot enough to emit with sufficient intensity in the visible
to be abowve the threshold level of optical sensitivity.

Exercise 15. What is the magnitude of solar emission g at the maximum and at both ex—

tremes of the visible spectrum 0.4 and 0.7 um? What are the intensities of natural solar
radiation incident on the atmosphere at the same wavelengths?

Exercise 16. An object is said to be red hot when its emission at the long wavelength
(red) end of the visible is sufficient that the eye can detect its emission. This condi-
tion is achieved at about 1200 X. What are Ap;y and &Q345y 2t this temperature? What is
the magnitude of emission _at 0.7 ym?

Our discussion of photon transport in gases has been based on the free particle mode.
Molecular transport at very low pressures (see Exmp. 6) and free electron and phonon
transport at vety low temperatures {discussed briefly below) must alsc be modeled on this
basis, Though these processes are significant to certain engineering designs, we will not
consider free particle transport further. 1Instead we devote the remainder of the unit to

the far more typical case— transport within the continuum regime.
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ITI. CONTINUUM TRANSPORT

The carrier particles of the vast majority of transport processes have sufficiently
short mean free paths that they fall within the continuum regime. Transport is induced
by difference(s) in thermodynamic potential(s}. Thus a region undergoing a transport pro-
cess cannot be in an extensive equilibrium state.!* However, the continuum assumption
assures that as carrier particles move from regiom to region and effect transport they
will be continuously relaxed through collisions toward an equilibrium value in each local
region. Thus the comtinuwn assumption is sufficient to assure local equilibrium states.'”
The properties of systems undergoing a continuum transport process are equilibrium prop—
erties at each point. The spatial property variations are continvous; continuum trans-
port can be described in terms of local property derivatives. Furthermore, most continuum
transport processes occcur with or without net carrier particle transport. (Mass and
charge transport are exceptions, see below.) That is, transport results from the gradi-
ent in the transported quantity rather than from a net flux of carrier particles., Con-
sider the following general development.

Continuum Transport without a Net Carrier Particle Flux. Let [(x) be the mean

value of a conserved quantity per carrier particie at position x and n''(x} the

flux of carrier particles. Since local equilibrium exists at position x, the

particle flux is isotropic at that point (in a stationary system). Thus cthe

flux of carrier particles in positive x direction is equal to the flux of carrier

particles in the negative x direction at each point. If the system is in an

extensive equilibrium state, the flux of the conserved quantity is the same
in all directions.

] = 2N LAl S
= =n (x)I'({x
=t = AT E)
Now consider how this changes when the system is not in extensive equilibrium,
Let A, be the component of the mean free path in the x direction for particles
moving in either the positive or the negative x direction at point x. Then

1%The distinction between an extensive and an intensive (local) equilibrium state is
discussed in Unit TA, see definitions 28 and 31.

Ans. 13. &[(300 K) =oT* = 5.668 « L078W/ (m?K") + (300 K)* = 459.1 W/m?; &L (1000 K) = 5.668

+ 10%W/m?; ég(sooo K) = 4,591 « 10°W/m?, é;(l0,0UO K) = 5.668 « 10%W/m®.

Ans. l4. The rate of radiation is governed by the surface temperature and emittance ac-

cording to 0 = AeoTH. Thus the respective steady state temperatures are
1/4 1/4
(Kélg] - { 5 R20E ] = 531 K; T, = 254 K.
"1 2m” + 0.05 - 5,668 - 10 W/ (m' K )-

The higher temperature may be too high for some components. The system may be designed tg

T
1

operate at any desired temperature level between these two by using an appropriate surfaCj
treatment or radiator area.
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the flux in the positive direction at point x is

governed by the average value of the conserved guan- ;f;?a;*ﬁ
tity at the position of the last eollision, that is at e x
x-hx. Thus, jix = ﬁ"(X)T(K'-lx). Similarly, the _ Ifx-3/ | —= Flaed)
. A -4 L% ; .
flux in the negative direction is j"x=nﬁ(x)F(x+Ax). T "{n) : Ay
B TT"_. I
The net flux is the difference between these two ~>4Q£t\jﬁ

quantities, And since the syfgem is a continuum
we can simplify by expanding TI'(x) ir a Tayler series,
Thus the net transport of the conserved gquantity T is

SH et =1t _ =u[a ol AT} - ar‘(x)
=gy -t = a [F(x—?«x) - r(xﬂx)] = f {E‘(x) I }

T M — 0t M
- [T(x) g }} = -2 (A 52

This is a general differential expression for the transport flux in a continuum, It is

written in terms of the mean free path component in a single direction. This directional
mean free path can be related to the general, nondirectional mean free path, Kc, by inte-—
gration using a particle's collision probability, see Ref. 1. The result is }xx= (2/3)-Ac.

With this substitution, the continuum transport flux without net carrier particle flux is

Ans, 15, The maximum for solar radiation occurs at Ap,. = 2898 umK/5600 K = 0,518 um. At

this peak, x = hc/A kT = 4,965 and
max max

- 6 4
. 21.rhc2 1 2m - 6.625+ 10 3435 {2.998 - 1081:1/5)2 < (10 umfm) 7 2
al' | = - 5 7965 =7.05-10 W/ /m um
b"l‘max A2 *nax {0.518 um) (e’ -1
max [e -l}
Similarly, at 0.4 and 0.7 um,
7 2 - 7 2
al = . " 600 K) = 5.84 «10°W
eb,U.éum(Saoo K} 5.98 « 10 W/ (m " um) eb,D.?um(S ) /(m um)
The radiation incident on the atmosphere is attenuated by the factor
2 2
d &
. -5
(___dsun) - (l:."_—“ 12 k“‘) = 9,54+ 10
orb 150 - 10 'km
So the intensities of natural solar light .are
Al 2 a1 = 2 ] = W 2
10 = 6792W/ (m um), 13 4um 5705W/@ um), 15 5 = 5571 / (m"um) )
Ans. 16. A x =2898 umK/1200 K = 2.416 n. At this maximum:
— ma .
2
. 4 2
S = 54965 Z"hz 965 .= 3.19-10 W/ {m"um)
*"max A~ (e "7 -1}
max
But at A = 0.7 wm, AT =840 pmK and he/AkT = 17.14. Thus
T 21he? 2
= - = B0.48 W/ (m um

Notice that this threshold level for wvwisibility is about two orders of magnitude less than

that of natural lipght {see Exer. 15 . 1"
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_ 4, aT(x)

PR .II _
ir 3 ¢ X (TTIE-18)
We can apply this result to momentum, heat, and species transport.
A
Momentum Transpert. Consider fluid flow parallel t-> *
a surface as shown. The particles in contact with the
wall are stationary. As a result a velocity defect
zone is developed in the vicinity of the surface. The
thickness and velocity distribution within this "lound- g_a{
ary layer” are governed by momentum transport between 3¢ X
the adjacent layers. The average y momentum cof the
particles at distance x from the wall is T (x) =m u{x).
The momentum £lux is predicted by egn. IIIE-18 and it
equals the negative of the shear stress at that point.15 Y >
. 4 . Im*u(x)
tn = _ 2 s, = -
Jm*u 3% % ax Yy

The proportionality between the velocity gradient and shear stress is normally re-
ported in terms of the constitutive equation, Oy = udu/3x, that defines the Newtonian
viscosity of a fluid, U. When we substitute this definition into the previous expression
for the momentum flux, we obtain a general expression for the viscosity of a fluid
n" m*?\c = E-‘;c- (IIIE-19a)

A similar procedure can be used to develop a general expression for thermal conductivity.

w|e

u =

Heat Transport. Continuum energy transport by means of any carrier particle, i,
can be obtained by identifying the transported quantity as the average energy per
carrier particle, I (x} = ﬁ./NA. Application of eqn. IITE-18 gives the contin-
uum heat Flux contribution 3f each type of carrier particlel®

. =E.ﬁu \ B ui[T(x) . ini Ac,i dui(T) E}_igli s ) T
Teh, 173 M1 “¢,1 ax N, 37N, dT N, v,1 ox 34

The proportionality between the rate of continuum heat transport and the local tempera-

]
1

[N

QJ|QJ
L]

ture gradient is normally reported in terms of the comstitutive equation called the

Fourier-8ict Law, &; i = —KiBT/Bx, that defines the thermal conductivity component, Ki

k] ~
by Py Vi S
= A = ey -
K, = 3 ¥, St e - - (I1IE-20a)

Note the similarity of the expressions for Ki and u. In a fluid the carrier particle for

both heat and momentum is the molecule. Thus the molecular conductivity of a fluid is

1%Note that there need be no net particle transport in the x direction in order for
the y momentdm to be transported in this direction.

loye will apply this relationship to molecule, phonon, and free electron carrier
particles. The result is equally applicable to a photon continuum, or radiant transport
in optically thick media. However, it is unusual for radiarion to be an appreciable
transport process in media that are optically thick.
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predicted by analogy with the thermal conductivity

K = ne, (IIIE-21a)
4 similar procedure can be employed to develop a general expression for the rate of dif-
fusion induced by a concentration gradien: within a molecular gas mixture, This expres-
sion provides a means to define the diffusion coefficient. However, this development re-
quires censideration of gaseous mixtures; that is, requires techniques of Unit VIA. Since
Unit VIA is not a prerequisite to this unit, diffusion is discussed in Appendix A. In the

following section we consider momentum and heat transport withinmolecular gaseous continua.

A. The Transport Properties of Molecular Gases

The viscosity of a perfect molecular gas is determined by substituting eqns. IIIE-3a,

11, and 13b inte eqn., IIIE-1%a. The result is

* 2

b= —%—_ (ET—) (IIIE-19b)

™
3g A

Exercise 17. Determine the viscosity of oxygen and helium at 100, 306G, and 1000 X,

Both the form and numerical results predicted by eqn. I[ITE-1%b are in satisfactory
agreement with data. Similarly, application of eqns. 20a and 2la correctly predicts the
form for perfect gases. The numerical predictions, however, are off by a significant fac-
tor. This deviation is primarily caused by coupling between the speed, energy and mean
free path of the carrier molecules. A more rigorous development would account for the
fact that slow moving molecules have less kinetic energy and shorter than average mean

17

free paths and vice versa. These effects have been accounted for by Euken, whose ex-

pression for K has the same form but a different numerical coefficient than that of eqns.

ITIE-20aor 21la * 1
* )
#  (9y ~ 5) u*c*__(ﬂ_-_i)__k._(ﬂ)
K =——7F—" - * -2
% v 6o+ (v -1) ) (ITIE-20b)

The analogy between heat and momentum transport is further emphasized by the dinensionless

property ratio called the Prandtl nwmber, Pr = ucpr. Eqns. IITE-19b and 20b predict the

Prandtl number of perfect gases to be

% % "
H C
- p by
Pr* = - = 9—*'—'; (IIEE-»ZZ)
K Y -

Exercise 18. Extend the results of Exer. 17 ro determine the thermal conductivity and
Prandtl number of oxygen and helium at 100, 300, and 1000 K.

17The transport flux of kinetic energy is enhanced by a factor of Ffour thirds over
that predicted using eqn. LIIE-15, viz., &, = 2"2kT rather than a"(3/2) - kI, sce Ref. 4.
This correction is not by itself sufficient to obtain Fuken's resuit. The mean free path
effect must also be accounted for.
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Appendix A employs a similar procedure to predict the rate at which one species dif-
fuses through another within a continuum fluid. When applied to a perfect gas the result-
ing diffusion coefficients have a form similar to that for u* and K*. All of the molec-
ular transport coefficlents within a perfect gas continuum ave independent of pressure.!’
Recognize that this means there is no inherent reductiom in viscous drag associated with
flight at higher altitudes and there is no inherent reduction in the rate of molecular
heat conduction obtained by evacuation.!? These transport processes are only indirectly

affected by pressure as long as the gas remains within the centinuum regime, see Exmp. 6.

B. Transport Properties of Solids

There are two carrier particles that dominate the transport processes that occur in
solids— free electrons and phonons.20 Since phonons are uncharged, only free electrons
participate in charge transport. And, to the extent that free electrons are present, they
tend to dominate heat tramsport as well. However, since phonoiis contribute in a manner
similar to heat transport in both conductors and nonconductors, we will first determine
the form and magnitude of the phonon conductivity. Ultimately, we will sae How both free
electron and phonen contributions can be superposed to determine the total heac transport
in a solid.

The phonon contribution to thermal conductivity is predicted directly from eqn.

IIIE-20a,

K = pcs)\c,phn Cv,phn

phn 3

is the Debye continuum portiom of the specific

where ¢ is the lattice density and c¢
v,phn

heat.?! The difficulty in employing this regult is associated with specifying the phonen

mean free path.

Phonen Collision Processes. As phonons propogate through the crystal rhey carry
their energy with them. However, if that energy is to be delivered from one re-
gion to another, the carrier phonons must exchange energy in different locations
of the crystal. Thus, phonon cellisions are necessary for phonon heat transport,

18The pressure independeme is a result of the cancellation of the pressure depen-
dences of the number density and mean free path, n A ™ p~lpap®.

1970tal drag may well be reduced at higher altitudes since density is a factor in
the "form"drag associated with separated flow. Similarly, the net rate of heat transport
under evacuated conditions changes with pressure since the free convective flow that
causes ''convective' augmentation is a result of density changes.

2Opiffusion in solids is very minimal; but atoms or molecules would be the carrier
particles. Photon heat tramsport is also present; but it is almost always negligible in
comparison to phonon or free electron processes.

2lThe internal mode components of the specific heat (see Appendix A, Unit ITID) do
not participate in phonon transport. This enerpy is localized within each specific lat-
tice point,



i

CONTINUUM TRANSPORT 21

and A phn 1is a primary factor in determining K,,,. Two types of collisions
are 1mportant in limiting the phonon mean free path. (Phonon collisions with
free electrons and photons are not ordinarily a significant effect.)

Phonon~phonon collisions are dominant at high temperatures, T ~ 8p. However,
only a portion of the phonon-phonon collisions limit the rate of heat trans-
port. If two freely translating phonons collide, energy and momencum are con-
served; thus there is no net change in the rate or direction of energy trans—
poert, In contrast, when a phonon collides with an optical mode vibration in

a molecular crystal {see Unit IIID), the rate and direction of energy transport
are altered. Similarly a certain fraction of phonon-phonon collisions involve
localized lattice point vibrations (atomic or molecular). Such processes also
alter the rate and direction of energy transport. Collectively all of the
phonon collisions that affect the rate of phomon transport are called Umklapp
rrocesses., Partially as a result of the necessity to discriminate between the
effective and ineffective phonen-phonon collisions, it is difficult to guanti-
tatively predict the magnitude of the effective mean free path. But on a quali~
tative basis, eqn, ITIE-13a predicts that it is inversely proportional to the
phonon density within the crystal, A

c,phn-phn nv ,phn”

Phonon-Lattice Defect Collisions. Imperfections in the crystalline array are
present in all but the most perfect single crystals, These imperfections may
be due to strain, mechanical working, or lattice distortions in the region of
an impurity or simply the grain boundary where two lattice orientaticns meet,
All of these sources limit the phonon mean free path to a constant that is
proportional to the defect spacing, Ac,phn-def = &L,

Since we cannot predict the magnitude of lc phn’ we are prevented from making a quan-
b

titative determination of Kphn' However, an understanding of the underlying physical

a 2 [ .
Ans. 17, From Table IIIE-2, Gg = 40,9 (A) and of = 14,9 (A)z. This gives for oxygen
— 2 He
at 100 K
L -23 L

* 2 IMKTY® 2 32.0 kg/(kgmol)-1.38-10 “"J/(part &) - 100 K(*

M, (100 K = =2 (o) = 02 76
2 30 M UA 3-40.9-10 ° T 6,023 10" part/(kg mol)

A similar procedure gives the values listed in the table of Ans. 18.

0.787 - 10'5kg/(m s)

Ans. 18. The values of u™ predicted in Exer 17, and listed in the table be%ow can be
readlly extended to the evaluation of K* using Euken"s formula. At 100 K, e 0 ™ (5/%)R.

P r
c (5/2+1)R
P,02
*
* _ {9y =5) * x _ 9'1.4-5) -6 . . (8314
Koz(loo K) = ——F—ue_ = (_—————4 7.87+ 10 "kgf{ms)- (5/2) (32_0) J/ (kg K)
-3
= 9,71+ 10 "W/ (mK) T 5 p.
uTe ia cs * ke 107
and * Ane ¥ 4« 1.4 J— SUPSTANCS (%) figsimsh| (3 hei] ' T:f(ml?l r
po= AN .= — = 1,737,
r - 0 e« 1.4 - 5 Lon n "87 651 .40 0,973 0,737
(q«( —S) Oxygen 300 1.73% K59 1.39 214 n. 740
tenn 7.a7 LETUN DI S S B NP 2
The results for the remaining conditiogs as well as 100 0784 3120 16T 5§68 n.6eT
the values of ¢’ (see Unit IIIC) and W™ for Exer, 17  Hetion 300 1.0 I Ler o 130 0. k6T
4 lane  7.ed N .67 59,8 0,667

are listed in the table.
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process does allow us to achieve considerable insight with respect to how Kphn varies with

temperature, see Fig. TIILE-3.

The Thermal Conductivity of Insulating Solids. Heat tramsport within an opaque
electrical nonconductor is dominated by phonon transport. The thermal conduc-
tivity in such crystals is predicted by egn. IIIE-20a, where the effective mean
free path is determined from
1 1
) gl 3 -
c,phn ¢, phn-phn ¢,phn-imp

Thus, phonon heat transport is limited by the most efficient collison process,
i.e., the shortest mean free path. This limiting process changes as we go from
one region of temperature to another.

The high temperature region is defined by T > 8p. 1In this range, ¢, ;. = 3R
in atomic lattices and SR or BR in molecular lattices. Also the phoﬁgn density
is high enough that phonon-phonon collisions dominate; n,, ., =T {see Unit IIID)
and A. ohp-phn < Ac,phn-imp+ Thus thermal conductiviey 15 inversely propor-
tional to temperature.

pcS(B)R
Kinss(T z GD) = in "
v,phn

|

The low temperature region, T << S%p. At low temperatures cy ppn T¥ and phonon-
impurity collisions will dominate A. ohp-phn > kc,phn-imp'héi‘ Thus the conduc-
+ivirv will be proportional to

pcSSL T3
Kins(T << eD) = _H—?__GT

3

The intermediate temperature region, T ™ SD. The temperature variation of Ky,

in this region is strongly dependent on the purity and quality of the crystal.

In very pure, carefully grown single crystals kc,phn-imp approaches the size of
the crystal and phonon-phonon collisions continue to dominate to quite low tem-
peratures. This gives relatively large values of Kjqg down to quite low temper-
atures, In ordinary solids with an appreciable impurity conc?ntration, Ae, phn-imp
is much shorter and these processes will become dominant at higher temperatures.
Below this point, the conductivity follows che Debye specific heat curve.

pcséL <, phn(T)
T v 8 o 2 c 1
Kins( D) 3 * v,phn( )
/\\  fgh puriry, - Very pure,
: «  singe Crysral gnheqlad
log K i
e I \ oo o
r 1 w 6
‘ /\.’\ " |
i ! R )
: \' 7 wmpure, imper fect,
/ ' T . strained
K ' - T !
v : ;
|I0 1a
0g (T/8;) log {1785}
Fig. IITE-3. Insulator Thermal Fig. IIIE-4. Metallic Thermal

Conductivities (Schematic) Conductivities (Schematic)
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The preceding discussion is summarized in Fig. IIIE-4; it illustrates the form of the
thermal conductivity of insulating solids. It also represents the phonon component of the
total conductivity of an electrical conductor. The free electron contribution to the
thermal conductivity of a metallic conductor can be discussed in a similar manner. For
free electrons, egqn. IITE-20 takes the form

A A
° F cv,el c,F

Kel 3

where 0 is the crystalline density and ¢ is the free electron specific heat, In Unit

v,el
IIID we found that c, el[z (w2/2)- R- (T/BF)] was quite low, since only the elecrrons in

the vicinity of the Fermi level are capable of being excited. Therefore, the velocity and
mean free path of interest are those of the free electrons at the Fermi level, VF and

Ac . Now consider the temperature dependence of Kel(T). p and VF are constant and the
1)

temperature dependence of e, el(ec T} is known. Therefore, the variatioms in Kel to be
£

determined are governed by those in Ac P
L4

Free Electron Collision Processes. The important collision processes for Ffree
electrons are the same as those for phonons. We can, therefore, separate the

form of Kel into low and high temperature regions.

In the Mgk temperature regicn, . T » 9, the phonon density is sufficient that
electron~-phonon collisions predominate, Ao F = Ag,el-phn © ljnv,ph- The temper-
ature dependence is determined by n, phn =’T. Thas
’
v A
K (T >8.) = PVp cv,el c,el-p . T, 9
el 3 T

At high temperatures Kel is independent of temperature.

In the Zow-temperature regton,T < Op» the phonon density is sufficiently re-

duced that Ac,el_phn > Ac,el—def = 6L. Thus

pV_ ¢ SL
F "v,el
= @
(T < aD) —————3L————- T

when the remperature is reduced to the point that defect collisions dominate,
then Kot is linearly proportional to temperature. In very pure, carefully
annealed conductors this transition is delayed to much lower temperatures.

At low temperature levels the phonon demsity falls expomentially, n o exp(-0- /T)
This casues Kel to increase until the defect scattering limit is reaéﬁea see Flg.
IITE-4

We have noted that heat is carried simultaneously by phonons and ~lectrons, Figs.
IIIC~4 and 5. Their effects can be combined om the basis of

EIZ = ?1_ " R_L. (IITE-23)
el phn

Even though only a small percentage of the free electrons near the Fermi level participate

in heat transport, so that c, o > Cy,phn» the speed of electron motlon is so much faster
1 ]
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than that of phonons, VF >> cs, that Kel dominates the conductivity of good electrical
conductors by one and a half to two orders of magnitude. In alloyed materials and poor

conductors the ratio is much less and the two contributions may be comparable,

Exercise 19. The following are illustrations of material applications in which the con-
sideration of heat conduction is an essentlal element in design: (a) aluminum wire for
long distance electrical transmission; (b) copper lead wires to a superconducting magnet
(these span the temperature range from the 10 K magnet to the 300 K supply); (c) silicon
rectifier; (d) the stainless steel tubes of steam boiler; (e) synthetic diamonds used as
the cutting edge om a high-speed cutting tool., We are to make a decision based on engi~
neering judgement whether their respective thermal conductivities could be considered con-
stant or must they be treated as a variable for accurate engineering design. If variabie
conductivity analysis is necessary, will K(T)} have a positive or negative slope?

The second transport process that is of great significance in solids is charge trans-
port. To be a conductor a crystal must contain electrons that are not bound to specific
points within the c¢rystal-free electrons. Whether a specific solid is an insulator, con-
ductor, or semiconductor can be discussed in terms of the band theory for the electrons

of a solid.

Consider the formation of an atomic lattice peoint €
solid. The Bohr model for the atom specifies that the
states accessible to the electrons are located on bé"dSOf
a;:cfessmm
states

spheres of increasing radii (the successively higher

erergy shells, levels, have 2, 8, 18, etc., states).

As these atoms are packed into a crystal, their elec—

tron interactions cause a slight shift in the magni-

tude of the staces giving rise to an almost continu-
"hand" of accessible states clustered around the —_—

Fig. II1IE-5. 3Bands Formed
still discrete Bohr levels, see Fig. IITE-5, We will by the Splitting of Levels

ous

examine this model to distinguish the electrical

properties of solids.

Insulators. MNoble gas atoms have a full ocuter electrom shell. In their crys-
talline form che band corresponding to the outer shell is full and the next
kigher band is empty. The Fermi level in such solids is in the forbidden gap.
between the bands. As a result there are no empty states accessible to the
electrons; these solids are nonconducting. Molecules are formed by ionic or
covalent electron bounding. In that sense they achieve a stable outer electron
configuration similar to the rate gases. Molecular crystals are generally
elecrical insulators. (See Fig. IIIE~6a.)

Conductors. Metals have a relatively small number of electromrs in their outer
shell. As a result they form atomic crystals in which the outer shell band is
only partly full. The Fermi level is within this conduction band. Since there
are many empty state accessible to these free electrons, metals are electrical
conductors., (See Fig. IIIE-6h.)

Semiconductors. Transition elements like carbon, silicon, and germanium, form
atomic crystals in which the valence electrons arc shared among the nearest
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Fig. ITIE-6. Electrical Characteristics

neighbors in a stable covalent bond. This gives a filled valence band that is
relatively narrowly separated from the next higher conduction band. The Fermi
level is in the forbidden gap- In that respect, semiconductors are like insu-
lators. The difference between them is the magnitude of the gap, de,. In a
semiconductor crystal the gap is smaller than that of an insulator. “The energy
gap of a semiconductor can be avercome by thermal excitation. When the temper—
ature level in the crystal reaches T Bg(= Azg/k), electrons are excited into
the conduction band where they act as free eledtrons. In addition, the empty
states in the valence band provide "holes” thac allow the bound electrons to
change state. (See Fig. IIIE-4¢,) Thus, the holes act as positively 2harged
carrier particles. A pure substance of this type is called an Zntrisnsic semi-
condueteor,

The electrical properties of a semiconductor can be medified by introducing a
suitable impurity called a dopant, (Fig. IIIE-6d). Semiconductors with posi-
tive carrier particles, ""P type,” formed by introducing an impurity with empty
states just above the valence band. These aceeptor states are readily occupied
by electrons at relatively low temperatures. Similarly, semiconductors with
negative carrier particles, " type,” are formed by coping with an impurity with
a full, donor state just below the conduction band .

When a potential is imposed on a conductor (or semiconductor}, the free electrong
are accelerated toward regions of high voltage.22 Without collisions the electrons would
¢ontinue to accelerate and very high current densities would result, i" = =, Hoyever,
after an electron has been accelarated for a time period that averages a mean free time,

it will be scattered by a collision with the lattice.?? As a result, each electron will,

on average, lose the momentum it had acquired in the direction of the applied field. Thus

22Each electron that is accelerated shifts to a different energy state, Therefore,
it leaves an empty state that is accessible to other electrons. Electrons below the Fermi
level accelerate by shifting sequentially into vacant states created by the acceleration
of the entire group. Thus, unlike free electron heat transport that involves only elec-
trons near the Fermi level, all of the free electrons participate in charge transport,
On the other hand, electron-lattice collisions occur one at a time. A collision must move
each electron to an accessible empty state. Thus collisions are 1imited by the accessi-
bility of empty states and hence by the collision probability of electrons near the Fermi
level. Thus, the appropriate mean free time is that of electrons near the Fermi level,

T .
c,F
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the net effect of the potential is to cause the electrons to drift through the lattice at

a speed, Uiy that is governed by the field intensity, }Ef, and the collision frequency,

- — x* -
To " As deseribed by Newton's third law, the relationship is lFell = e|E| = m 1a811
]
%
=m, uel/Tc F? where the electron acceleration is expressed as a ratio of the drift
»

velocity and the mean free time. The current density can also be described in terms of

the drift velocity (as well as the free electron number density and the electron charge)

i = 0, 1% Ye1® This permits one to eliminate the drift velocity between these two ex-=
»

pressions. The result is an expression in the form of Ohm's Law that allows the glectri-

cal conductivity, @, ;» tO be determined.

2
n e T n N pe
- 1 -
i" =0 Bl = (—319——;———5JE)|E| or o= —Ev—%———-iiﬂi (IITE-24a, 24b)
\ m 2 m MV
e e F

We have expressed the electrical conductivity in terms of the free electron mean free
path. This is the only variable in eqn. IIIE-24b. Thus the temperature dependence of
0,y can be deduced from our earlier discussion of free electron collision processes as

they related to Kel’ Fig. IIIE-6.

The temperature dependence of T is governed by Ac Fr In the high tempergiure

b

region, T > 8p, free electron collisions are dominated by electron-phonen inter-

i = @ <
actions, kc,F Ac,el-phn l/nv,phn 1/T. Thus,

1
a il
. el(T z aD) T
In the low temperature regton, T << Sy, the phonomn density is sufficiently reduced
thaF lc,el—ghn = Ac,el-def = &1, Thus at low temperatures metallic electrical
resistance acomes constant

a = O e T°
el el,o

The temperature level at which the transition from phonon to defect scattering
occurs is heavily dependent on the purity and condition {annealing, cold work-
ing, etc.) of the conductor.

The analogy between electrical conductivity and the free electron compenent of ther—

mal conductivity in metals can be expressed in an analytic form.

E;;. 19, (a) Aluminum transmission cables will be at temperatures slightly above these of
environment. Thus, eD,Al = 396 K » Tg. In this excellent conductor, the thermal conduc—
tivity will have a slight negative slope. Constant -K analysis should be satisfactory.

(b) 8p o= 319 K. The copper wire's temperature varies from low to intermediate. The
slope of K(T) will be negative throughout. VYariable K(T) analysis is essential to achieve
a reasonable solution in this situation., ({c) Silicon rectifiers (8p = 658 K) are at tem-
peratures slightly above their enviromment. Assuming an environment near 300 X, K{T} is

significantly variable with negative slope. Over Fhe marrow temperature span within the
material constant K analysis should be satisfactory. (d) Iron, Chrome, and Nickel are
the principal components in stainless steel. Thus, Bp ™ 450 K. At the elevated temper-
itures of operatiom, K should be constant. (e} Diamond has a high Debye temperature,
860 K, Even at high cutting temperatures, T < fp. K{T) will have a negative slope.
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Example 8. Tormulate the ratio Kel/qel by substitution of all known parameters into-:eqns.
II1E~20b and 24b. Verify that all unknown parameters cancel and obtain the result in
terms of universal constants and temperature.

The ratio of interest is of the general form

Cv,el 2 *
; —v.el
Kel ~ p VF 3 C.F VF M cv,el ™
g 2 h 2
h X
el ne VA e o F 3 ne NA e
*
r,n.e M VF
Then substituting from eqns. IIID-22 and ITIE-7
7T2 (T 2k SF % B
CV,E]_=_2-MR('5—-—) VF=( *] R=NAk
F Lom
e
we have
2
Kel _ 1 frk
g . 3le) T
el

The preceding problem expressed the analogy between the thermal and electrical conductiv-

ity of free electrons in a metal in the analytic form known as the Wiademamn-Franz Lena,

K 2 2
| _ elT A %; EEJ = 2.45 - 10°% W/’ (ITIE-25)
el

where L is known as the Lorentz wnumber. The Wiedemann-Franz law is sufficiently accurate
that the relatively easily measured electrical conductivity is often employed to predict

the thermal conductivity of good conductors.?23

Example 9. Platinum resistance thermometers are constructed of a carefully wound strain
free coil of highly purified platinum wire. A particular thermometer uses a 3 m length
of 50 um diameter wire. Its calibration curve includes the following values: T = 10 K,
R =0.2723 4; T = 100 K, R = 42.3602:and T = 300 K, R = 151.3 . Use these data and the
Wiedemann-Franz law to determine the thermal conductivity of platinum at each of these
temperatures. In addition, determine the free electron mean free path at these tempera-
tures,

The resistance of a wire is related to its electrical conductiviry by R = L/(Acnel). Thus
a can be determined from
el 4L 4-3m 9
Uel(lo K) = = - 6.2 5 = 3,611+ 107/ (fm)
md” (10 K) T (5010 m - 0.2723 @
Similarly, 09,1100 K} = 3,607 - 107/(0m) and 041(300 K) = 1.010 < 107/(02 m). The eqn.
ITIk-25 gives the corresponding values for Kel

-

23The Wiedemanj-Franz law only predicts the free electron contribution to thermal con-
ductivity, Tts utility is therefore restricted to good conductors in which Kg1 >> Kppa.
The Wiedemann-Franz law is sufficient for engineering accuracy at both low and high temper—
atures. The rerationship is not as accurate at intermediate temperatures in good conduc-
tors with i £ '
relatively large values o Ac,el—def
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8

K{10 K) = Kel(lD Ky =L T.1 T=2,45+10 W Q/KZ' 5.611 - 109/(Qm) - 10 K = 1373 W/ {(mK)

And K(LOO K) = 88.37 W/ (nK), K(300 XK) = 74.24 W/ (mK)

The carefully measured resistances of the platinum thermometer give an accurate measure
of the free electron mean free path based omn eqn. IIIE-21b. For platinum n_ = 2,
6 = 1.14 - 10°%, ¢ = 21.5 g/cm® and M = 195.0 kg/(kg mol). Thus, =

! P -23 5 1%
v, = ( *F) =[? »1.380 - 10 J/Egirt K)+1.14* 10 K] - 1.86 10%0/s
\ m 9,109 - 10 ~kg/elect
g ,(10 ¥) * V.M
1 m h
x, p(10 K) = e > E
?‘IE NA pe
9 -31 6
_ 5.611+10°/( m) = 9,109 - 10 kg/elect » 1.86 - 10 m/s *» 195 kg/ (kg mol)
26 -
2+-6.023 - 107 part/(kg mol) + 21.3 1o3kg/m3- (1.602 » 10 19C)2
=2.81-10 %0 = 2.81- 10" a
and

XC,F(lOD K) = 181 4, AC’F(BOO K) = 50,6 A,

Exercise 20. YNichrome is am alloy that is used extensively in resistance heating ele-

ments. At room temperature its conductivity is 9.7 - 10%/(m)., Use the Wiedemann-Franz
law to determine its thermal conductivity. Comment on the authenticity of this procedure
for nichrome.

A comparison between Exmp. 9 and Exer. 70 illustrates the very large difference be-
tween the electrical conductivities of the relatively good conductor, platinum, and the
poor conductor, nichrome. The Wiedemann Franz law provides a convenient method of pre-~
dicting the thermal conductivity of metals from rather easily obtained electric resistance
data. However, this technique is not satisfactory for poor conductors; in poor conduc-
tors—metallic or semiconductor, lattice heat conduction is appreciable. In principle,
éqn, IIIE-24b can be employed to determine the electrical conductivity of semiconductors.
However, one must recognize that the free\electron number density (or valence) of semi-
conductors is a variable. Indeed, in intrinsic semiconductors the variation of ﬂv,el

dominates the temperature dependence of the electrical conductivity. As a result cel in-

creases with temperature for intrinsic semiconductors.

Ans. 20. K *K .  =1Lg

o T = 2445 10 8un/k% - 9.7 - 10°/(Sm) + 300 K = 7.13 W/ (mK).

The thermal conductivity is an order of magnitude less than that for platinum and nearly
two orders of magnitude less than that for copper. The accuracy of the prediction is de-

pendent on phonon heat conduction being negligible for nichrome, This is a questionable
assumption.
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APPENDIX A

CONTINUUM DIFFUSION

The molar concentrations, X, are fundamentally intensive properties of a single phase
mixture. In equilibrium these potentials are uniform. If a gradient exists in one of
them, it will result in diffusion of that species.?” The carrier particles for diffusion
are the particles of the diffusing species. In that respect, diffusion is unlike momen-
tum and heat transport which occur even when the carrier particle flux is isotropic, Dif-
fusion is more like charge transpert im that it requires a drift, or net unbalanced move-

ment, of the carrier particles.

Diffusion in a Continuum. The mass rate of diffusion of species i in a singls
direction is the product of particle mass and the difference between the posi-

tive and negative fluxes of that species j; = m:(ﬁ; +-—ﬁ; ). The magnitudes
bl 3

of these two interpenetrating particle fluxes are governed by the positive.-
direction flux leaving position z - Az,i and the negative-direction flux leaving
z + Az 4+ Our development concerns diffusion in a continuum. Thus both fluxes
can be’expanded in a Taylor series about the position z.2°

" (z) an''(z) an"(z)
T *"'u TR * LR i X1} 1 - *, i
13 7m Py 4 =0y ) =my § 8] (@) Aevi Tz ng (2 FA, 5 T Mit2.i sz

Now the species Elux can be expressed inm terms of eqn. ITIIE-11, a''(z) = ﬁv i(z)ﬁ,/&
=n Vi xi(z)/4, where only the mole fraction is a function of ’ .

position. (Vi varies with temperature and n, with temperature or pressure, Such
gradients have been considered separately and are ignored in our discussion of
diffusion.) 1In addition, the directional mean free path component can be replaced

= . . st _ g 3
by the mean free path, Az,i (2/3) Xc,i' This gives 3t (mi n, Vi c,i)/s

*{9x,.(z)/az}. The standard form is obtained by introducing the mass fraccion,

- *
=1 N = d = .
yi {. x. /M (where m’, M. and n N, p/M})

V. % 5 3y, (2)
3= - o( L c’l) = (IITE-Al)

3 9z
This constitutive equation, called Figk's Legs, is normally introduced as a definition -of

the diffusion coefficient, j; = =9 Diayifaz. Comparing this to eqn. IILE-AL, we obtain

Vv, A
D, = —1-?°—:i (IIIE-A2a)

*“More correctly, equilibrium implies uniformity of the chemical potential, In single
phase mixtures this is equivalent to uniform concentfations. Our discussion also ignores
imposed fields, Ia a gravitational field nonuniform, hydrostatically distributed con-
teéntrations is the equilibrium state.

2%We use z as the spatial coordinate to avoid confusion with X, and yi.

29
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~

This is the general form of the diffusion coefficient. Vi is the mean speed of the dif-

fusing particles and Ac n is their mean free path considering all collision Processes.

»

For example, in a binary mixture in which only molecule-molecule collisiong are important

v, A
D]_2 = 1—3.9_2.!‘. where X 1 = 1 + 1 (IIIE"'AZb ,A3)

eyl teyi-1 re,1-2

where D12 connoted diffusion of species 1 through species 2. In that sense the diffusion
coefficient, indeed the whole idea of diffusion, is dependent not only on the diffusing
species but also on the species it is diffusing through. From the definitions of eqns.
ITIE-A2b and A3, it is recognized that a hypothetical self-diffusion coefficient can be

defined as

Vi 2e,1-1
Dy, = ——;—z——- (ITIE-A2c)

This is a property of the pure substance and it provides a useful guide to the diffusabil-
ity of the species. (D12 = Dll’ if species 1 and 2 are very similar.)
For a perfect gas and a perfect gax mixture, the self- and binary diffusion coeffi-

cients are obtained by substituting eqns. IIIE-5a, 13b, and A3 into eqn. IIIE-A2a

¥
3 2 [1 + -—1) %
. , MkT “ . ¥y fMlkT :
11 3jo, 4+ | =10
11 yle) 12

A comparison between eqn. IIIE-A4a and eqn. IITE-19b reveals that they are identical. The
ratio, (u /p,D ;), is known as'the Schmidt number, sc.zs Qur theory predicts that it is
unity for perfect gases. Data is closer to 0.75. Thus the simple hard sphere theory pre-
dicts the correct parametric form for the diffusion coefficients; but like the prediction
of thermal conductivity, it is numerically imprecise.

Exercise Al. Use eqns. IIIE-A4 to predict the self-diffusion coefficients of nitrogen and

oxygen at STP. Compre these results to the binary diffusion coefficients of the nitrogen
and oxygen components in alr at STP (yO2 = 0.23, yNz = 0.77).
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TABLE

IITE-1 EXPONTENTIAL INTERGRALS

Finite Limit

I xz e * dx
)

Infinice Limit

0.0016
1,D1%4
0.0583
a.1179
0.189%
0.2612
0.32M z
0.3708 f
0.4030 °
0.4227
0.4138 J. 4
°

= 2 N B — -
0 [ e e (B 1}{023} _‘__;__{;_T_r_. [ d:-%{" Ly,
o

0.4396
0,4410
I

TABLE IIIE-2.

COLLISTION CROSS SECTIONS

Substance bl ath otLchd
Helium e 2.1B 14.9
Heon Ne 2.5% 21.1
Argon At J.64 41.56
Krypeem Kr 4.16 54.4
Xanoo I 4,85 71.9
Harcury Hg 4.26 57.0
Bydrogeu 1{2 .74 3.6
Nitrogen “2 1.75 LT
Oxygen 02 3.81 40.9
Hydrogea chleride RCl 4.46 2.5
Carbon dioxidae CIJ2 4.59 b6.2
Wacer uzo 4.60 6.5
Ammcaia N'HJ 4,43 61.7
Methane CI!“ 4.54 53.8
Ethylana CH, 4.95 710
Ethane C,H, 5.0 38.2

Extracted from Xennard, E. A., Finetlic Theory
of Casaw, McGraw HiLl (1918),
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1Ans. L. The densities of NZ’ 02, and air at STP are

B ___ 1.013-10°N/z°

Ny RT (837 1 w) + 300 X

28.00

= 1.137 kg/m’

Lo}
|

= 1.299 kg/m>, o = 1.176 kg/m>
m.

o =
0,
a -]
From Table TIIE-2, a; = 44.2(a)% and cg = 42.6(a)°.
2 2
- 1
2
S
= +
a N, ¥, 3DN2 UNz N
= 32 557 [%8.00 kg/ (kg mol)
31,137 kg/m” + 84,2+ 10 T m
% 5 2
n/s

- 2
. 1.380- 10 23J/(part K) - 300 K- 1 kg a’ (JSZ)J = 1.04+10
T 6,023 - 1026part/(kg mol) |

Similarly, D = 1.0l - 10"°n%/s. Then

02,02
o)
2{1 + =2 %
N» KT 5 2
= = 2 = ° B
DN .0 - - MN To —_— ) 1.04 =10 "m" /s
2772 1p GN + OZM ZCN')Z O?ﬂ A
2 YNs0s
- e 1n=5.2
and D0 . 0.988 * 10~ "m“/s

2°72




