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UNIT ITIC

MICROSCOPTC CALCULATTON OF PERFECT GAS PROPERTIES

Statistical thermodynamics is a powerful tool for the determination of thermodynamic prop-

erties. The general technique requires selection of a model that describes the behavioer

of particles composing the system. Statistical procedures are then employed to predict

we illustrate general techniques through appli-

thermodynamic properties. In this unit,
rties obtained by these pro-

The numerical values of prope

cation to molecular gas models.
Equally important, however, is the phys-

cedures are of extreme practical significance.

ovided by the form of the results and an understanding of the models upon

ical insight pr

which they are based.

Objectives
Upon con

1. Describe the indistinguishable 1

erty determinations. Specify whethe
able limit at a specified thermodynamic state.

cluding the unit the student should be able to:
imit and its significance in simplifying prop-
r a given substance satisfies the indistinguish-

rgy modes. Specify the rela-

2. Differentiate between internal and external ene
de and those of the system as

tionship between the properties of each separate mo
a whole.

3. Define the characteristic temperature for a model whos
ified as an analytic functiom.

e energy levels are spec-—

tion for a mode. Specify

4. Write the series definition of the partition func
ion in the high-and low-tem-—

appropriate approximacions for a mode partition funct

perature limits.

5. Derive an expression for a specified property from a given analytic expression

for a mode's partition fumction.
s of modes for a specified molecule. Write an

6. Choose the correct number and type
d evaluate them at a specified state.

expression for its total properties an
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UNIT IIIC

MICROSCOPIC CALCULATION OF PERFECT GAS PROPERTIES

Precise thermodynamic calculations are dependent on the availability of accurate property
data. Macroscopic property measurement to obtain these data has two serious drawbacks,
One, accurate measurements are difficult, and therefore expensive. Two, the results zre
limited to the range covered by the measurements, Hence, many data points must be col-
lected to cover a broad range. This unit introduces an alternative,micrascopic, property
determination procedure that overcomes both of these limitatioms. 7

The microscopic approach prediects properties on the basis of a model of individual
particle behavior. Each model requires as input certain particle characteristiics, e.g.,
mass, moment of inertia, the effective spring constant of the molecular bonds, etc. These
parameters are inferred from measurement, usually from the emission spectra of the sub-
stance, $Since the parameters are molecular constants, a single set is sufficient for each
substance, and the analytical relationship between the model and the properties comsti-

tutes an extrapolation over a range of thermodynamic states. Thus the microscopic method

doesn't simply produce required data. Its requirement that a molecular model be selected

provides valuable understanding of how and why properties vary and when they can be ex-

pected to be constant. This perception can contribute significantly to engineering
judgement.

In this unittwe use the microscopic procedure to predict the properties of indepen-
dent particle molecular gases. We will Find that when gaseous particles are independent
they fall within the perfect gas region. Further, gasecus system particles are indistin-
guishable. They obey either Bose-Einstein or Fermi-Dirac statistics depending upon whether
they have an even or an odd number of subatomic components. In general, the properties of
Bosons and Fermiocns are distinet (Unit LIID). But there is an asymptotic limit in which

—11 the fundamental basis of their difference, the Pauli exclusion principle (Unit IIIA}, is

I

inconsequential. In this limit the properties of Bosons and Fermions are the same. We

e

will see below that for gases whose particles are atoms or molecules {as opposed to elec-

trous or electromagnetic and acoustic waves) the limit is satisfied under almost all’

i . e e -

achievable conditions. Therefore, this unit considers the properties of molecular perfect

gases only in the indistinguishable limit.

I. THE INDISTINGUISHABLE LIMIT

In Unit IIIB we developed the equilibrium distribution function for the distinguish-

able particles, Boltzons, as well as for the indistinguishable Fermions and Bosons

v .



2 MICROSCOPIC CALCULATION OF PERFECT GAS PROPERTIES
g. 2. g.
MB _ b FD _ i BE _ 3 _
n [a¥e. (N1/RT %y [ote (V) 1/KT i [ote (V) /KT (ITIB-8,14,16)
e J e J +1 e J -1

Inspection reveals that these forms differ by a single term, namely, the +1, -1, or O
appearing in the denominator. Therefore the two indistinguishable particle distributien }
functions become identical to one another and to the distinguishable particle, Maxwell-
Boltzmann distributinon function in the limit e[c“-E (V) 1/kT >>» 1, This limit, called tﬁe
indistinguishable or the Boltzmann Iimit {(z1), is described by the condition nj <<gj.
Recall that the distinction between Fermions and Bosons results from the Pauli exclu-—
sion principle. (No more than onme Fermion can occupy a state, nFD‘=gj; but any number of
Bosons can.) But the indistinguishable limit is nj <<gj. There%ore, in this limit very
few states would contain more than one Boson and the effect of the Pauli exclusion prin-
ciple on the distribution i§ inconsequential, This provides a physical explanation for
the fact that n§D==n§E = n?l whan nj <<gj. The following example provides an analytic

explanation,

Example 1. Use the condition n; << g.: to establish a relationship between the number of

microstates in a macrostate, Wi, for indistinguishable Fermions and Bosons to that of dis-
tinguishable Boltzons valid in the indistinguishable limic.

Eqns, 1IIA-7a, b and c¢ give the relationships between Dy s 8j and Wy For Fermions it is
WFD ? gJ[/[(gJ ! fng 4! ']. To establish its value in the llmlt examine the ratio
! {g.-1 ~2) ... ~n. L+2)(g.-n, +l)( —n )'
8, ) 8, (8, )(gJ ) (gJ i Bin. 5,
-~ )] =1, !
(gJ Jsi (gJ :l,iJ
But in the limit n, , <<g., , = 1) =« = - = (g o-n, +1)
Js1 gJ gJ (gJ ne gJ 1.1
S0 g ! a . . g 1,1
G pr o8 Wy T
SRR LA 3,40

The expression for Bosons is W BE (g, +n, i -1/ [ (s, -l)!nj i!]. Using the same ap-
proach, examine i I 1 ?

(yny s~D! By -Li(gitny 1-2) ... g, (g, -1
(gj—l)! (gj-l)!
Bue in the limit u, . <<g, (gytny ;710 = (gybny ;=2 = .. =g, 7
s nj,i
{g.+n, 1-1)‘ ) nj,i BE n &,
(&.-L)! Py and i 7 Jag

n

3, i FD BE MB

Further for Boltzouns, W&B==N! Tig, Jat fu, .!. Thus when n_ , <<g. 6 W ~ =Y W‘ /N!
1 3 3.1 J.1 i1 i

i




“ISHABLE LIMIT 3

. example showed that in the indistinguishable limit the number of micrestates
~ite is the same for Fermions and Bosons. But it is smaller than that for -
factor of Nt!
~ccognized that the distribution of particles over the levels is the same for
ratistics in the Boltzmann limit, we can bgrrow the expression for « cbtained
- 15 in Unit IIIB, e = Z(T,V)/N, where Z = L gj exp [—ej(v)/kT]. This gives
ariom distribution and equivalently the prgiability that a particle will be in

cvel in the limit ng << gj.

J
€y (V) /T ~e:j (V) /kT
- Ng .e . n, g.e
2 MB tl_  MB i
IR I E——S- I S e e I1IC-1a,b
X, nj Z(T, V) DJ DJ X Z(T, V) ( a,b)

o distribution functions become the same in the limit, the entropy of indistin-

; . iosons and Fermions remains distinct from that of distinguishable Boltzons. The
'ﬁ‘ - a macrostate was defined by eqn. ITIB-1 (54 = kinwi}. This is applicable to

- statistics. Thus, using the result of Exmp. 1 we have

- . W
R I (—ﬁM—,@% s~ yaant
_ P .. librium entropy of a system of Boltzons was formulated in Unit IIIB as
. . s = %+ Nk&n[Z(T,V}] (II1B-13)
2 .ubstitute this result and Stirling's approximation (&nN! =NnN-N, see Appendix
- =4}, we obtain :
st - L Nkﬂ.n[————"z(Tb;V)] + Nk

v relationships provide the basis for the determination of the properties of Boltzons,

“hose of Fermicns and Bosons in the indistinguishable limit. Microscopic property

X v rmination capitalizes on the similarity between substances. It is therefore conven-
T to formulate properties in molar wunits. We do so by substituting nN, = N and nv=V.

“+ gives {note that NAk = R)

- (nv) /KT
n, N g.e
g PO R S _ ITIC-1a
T %5 T n Z(T,nv) ( )
M 2 Yy Redz (1, o) s*h = ¥+ an [Z(T‘”V :l +R(111€-2a,b)
T i 4 T HNA

) 'N! iy the number of permutations, or distinct rearrangements, of N items. This is
‘ten advanced as a physical intecpretation of the appearance of that factor. However it
“® NOL an acceptable argument as the n;! which appears in the dencainator of all three
>tatistical formulae also has its origin in the distinguishability characteristic. It
19pears in thé Boltzon expression, so that the order in which the distinguishable par-
ticles are placed in the levels is not counted. And it appears in the Bose and Fermi ex-
PTessions to discount the counting of arrangements of the indistinguishable particles
1mong the states in the levels. {(See Ref. 4, pg 140.)




4 MICROSCOPIC CALCULATION OF PERFECT GAS PROPERTIES

The partition function is applicable to Boltzons and to Bosons and Fermions in the ¢
indistinguishable 1imit. It appears in each of the above expressions. The effort re-
quired to evaluate properties is greatly reduced if we formulate all properties in terms
of the partition function and its derivatives.?

- e, (nv)] -&. (n¥) /kT J ~ -, (nv) /kT
[az(g%nv)}_ - z z. [ 3 2} J = _lf Z g.gj(nv)e 3

kT kT™ j=1
and -
_ —n ~E. {nv) /&T v =
3Z(T, M| _ % . _.L_-L._as'(_nv o E 3 _J_dE () e5 ) /at
v . :1 317 kT~ av d(n%)

With these functions we can recognize the correspondence of properties to the partition

function from their definitions.

1. Internal Energy is defined as

J N J -¢, (nv) /kT
U=} n.ce, (0% =E&?—‘_’)- I g.e (V) e
j=1 J J 3 j=l .] J

Examining the form of (BZ/BT);, we see that y = (NAsz/Z)(BZ/BT); ar

-2 - -
- z -
- Blazaaw| | s 2[3wmz(r,nv)] (ITI0-3)
Z aT - aT J—
v
2. Entropy. With the development of eqn. IIIC-3 the entropy can be written in terms of (!
the partition function
B gy prnzrLew)] Renz(T,n7) (I11IC~4a)
L aT 5
St o gr|R2n2(Tinvy | Ran |2 L R (I1IC-4b)
aT 5 HNA

3. Pressure was defined in terms of microscopic parameters ia Unit IIIB (see footnote 15)

de (V) N de, (nv)7 =€, (nv} /KT
Y g[“—'l—] J

=1 i dv 2 d{n%)

Examining the form of (SZ/BG)T, we see that

PR E RG] (116s)

cV T JV T
4, Enthalpy. Substitution of eqmns. ITIC-3 and IIIC-5 into the definition of enthalpy

yields

= - - = din -{3inZ

h—u+pv—RTIE[‘(3T —+V(GU)T] {IIIC-8)

. v

Zz

All derivatives are performed at a fixed number of meles, The subscript n is implicit. G



TVALUATION OF THE PARTITION FUNCTION . 5

° 3. Constant Volume Specific Heat, <, is cobtained by differentiating eqn. IIIC-3°
s - 2,
_jauy _ & g 2(32n _ a3 [3ENZ =2 (D inZ
v ?a;)- |:BT AT }- 2RT| S5 - + ”T 2 - (I11¢-7)
* v 3 v aT v

The above relationships demonstrate that if the partition function can be formulated

[z}

analycically as a function of T and ;, the macroscopic properties are readily obtained.
Therefore, microscopic determination of the properties of Boltzons, Bosons and Fermions in

the indistinguishable limit reduces to finding Z(T,nv).

II. EVALUATION OF THE PARTITION FUNCTION

The partition function is defined as the sum over the J levels, or equivalently P

states, accessible to the particles composing the system.

_ J - (nv)/KT P =& _(nv)/kT
Z({T,nv) = Z g.e J e P
j=1

(IT1IB-12)

[

p=1

Example 2. Consider a system with a triply degenerate first level, gi =73. Expand the
first three terms of the sum over states and show that the result is equivalent to the

first term of the sum over levels.
- JkT - /KT -¢ /kT - /T P =-g /KT
P p P

P
Z= j e —e PRl e PEE L PR Ve
! p=1 p=4
The first three states of this series are members of the same level, so = _, = ¢ =z
_ . . p=1 p=2 p=3
= Ej=1, gj=l = 3, Thus the first terms can be written

-£j=l/kT P - /KT
Z = 3e + X e P

p=4
The remainder of the series, heginning at p=4, can be rewritten in terms of levels begin-~-
ning at j=2. States of equal value can be collapsed in an analogous manner with the de-
generacy of each level. Thus

- [kT
J

% J
+ g.e = E g.e
j=2 ] J=l J

-¢ [kT
3

We thus see the equivalence of the two series formulations.

As written, the series of energy levels accounts for all contributions to the particle
energy. In the evaluation of the partition function it is useful to subdivide particle

energy intc components.

3The speciffc heat at constant pressure can be formulated in an analegous manner,
using direct integration of eqn. IIIC-6, c, = (Gh/BT)P. But the constant pressure condi-

tion is not_easily applied. It is far_easier to_determine Ep from e, using eqn. ID-6,

(!’ c - c = TVSZ/K. For a perfect gas, c* =c* + R.
p v P v




6 MICROSCOPIC CALCULATION OF PERFECT GAS PROPERTIES

A. External and Internal Energy Modes

We begin the division into components by separating the energy which is dependent on
the internal structure of the particle, internal modes, from that which is not, the extar-
nal mode. The energy of the external mode includes the kinetic energy contribution of
center of gravity translation and the potential energy contribution due to interparticle
forces. This unit is restricted to consideration af systems of identical nonlocalized '
particles, liquids or gases; that is, to systems of indistinguishable Bosons or Fermions
and these only in the Boltzmann limict. in addition, all of Units IIT are limited to in-
dependent particles {(see Unit ITIA, Sect. IIA). To be considered independent nonlocalized
particles must have negligibie interparticle forces. Thus, the only external mode contri-
bution to be considered is that of translation. The only phase to be considered is the
gas phase.5

The principal advantage of separating energy into modes is that the energy levels and
degeneracies (EJ and g ) of complex particles can be evaluated one mode at a time. Sepa-
ration into modes allows the external mechanics of translation to be uncoupled from the
internal particle mechanics. That is, the solution of the Schroedinger equatien for inde—
pendent particle translacion— the particle in a box (Unit IIIA)— can be used in combina-
tion with separately obtained Schroedinger equatiom solutions for the internal modes. The
total wave function can then be determined from ¥ =wexwl The degeneracy is simply the
number of distinct wave functions, that is, states that have the same energy. Thus, the
degeneracy follows the same product rule as the wave Function. The separate mode energy
levels are additive.

(v) = e .{nv) +e, (I1IC-8a,b)
ex,1

85(1,2) - Bex,1%in,% ®1(i,0) in,2

The level designatiom, j, refers to the total mechanics of the particle. The separate
modes have been ordered into levels in an analogous manner. Their index designations are
1+ and 2. Therefore, the net level sequence is dependent on each subsaquence, i, .

Using eqns. 1IIC-8a,b the total partition function becomes

_ J <. E)(n;)/kT I L “le,, g (W ke VT
z(T,v) = Z g'(i R)e I - 2 z gex igin Re ' ’
j=1 b i=1 &=1 ’ ’
I e .{nw)/kT L —e, /KT _
- J g e T C T e ge WP .z @z (D (IS
i=1 ex,i 2=1 in, ex in

Similarly, the probability distribution can be formulated as

-

4Bpltzons are also identical particles. Identical particles become distinguishable
when they are tied to specific positiens in a lattice.

5The translating particles in a liquid interact with one another. They are dependernt.

¢



EVALUATICN OF THE PARTITION FUNCTION 7
-, .. nv) /kT -[ v £ }
g o 3(1,%)( ) 2 o 'Eex,i(nv)_+ in,l]/‘(T
) = G0 _ Bex,i%in,¢
1¢t 7 7
’ Z(T,n¥) ZEX(T,nv) Zin(T)
= pex,i(T,nv) pin,l(T) (IIIC-10)

That is, the probability that a particle will be in the j(i,l)th lavel is the product of
the probabilities that it will be in the ith external level and the Rth internal level.6
Notice that only the oxternal mechanics of the particle is dependent on the system volume.
(The volume enters the solution of the Schroedinger equation through the boundary condi-
tions.) Therefore, only the external energy Levels and partition function are dependant
on the system volume.

Separation of the partition functiom into modes allows properties to be determined
for each separate mode. Specifically since the partition function appears in property
relationships as a logarithm (eqns. IIIC-3 to 7), its contributions are additive,
n[Z(T,nv)] = ln[Zex(T,m—z)j + an{z, (D1. 4s applied in eqms. IIIC-3 to 7, we have

4 =1u + u, c = + ¢
ax in v v,ex v,in

ol

= + o, h o=ua _ +p _v+u
P pex pln uex pex v uin

We can use the same approach with the entropy. The results are identical when applied to

Boltzons, eqn, LIIC-2a. -

u u,
-M3 -MB , -MB ex , T in , 3 }
= = |— + {—— + RLnZ,
s Sex * Sin ( T + Rlnzex) ( T in

But when we apply this principle in the indistinguishable limit, the term that comes from
N! (see Exmp. 1) must be included in the entropy;but only ouce., We therefore define the

axternal and internal entrop¥y components in the indistinguishable limit as

i1 -1, =il i1 Sex = [Fex) . 3 - Yin o=
aPY = 5 s 37 s — 4+ -—= + R = —— + R&nZ, I11C-11la,b,c)
S Sex + Sin Sex T Rin (T\Ng Sln T in ( N

We have found that separate determination of Zex(T’n;) and Zin(T) is sufficient to
determine indistinguishable limit properties. In this case the energy levels and degen-
eracies of the external mode are those of the particle in the bor, Unit IIIA. The phys=
jcal mechanisms that contribute to the jnternal modes include: -

1. Rotation of the particle about its center of gravity:; Z. Vibration of the
constituent atoms about their mean position in the molecule: 3. Excitation of
bound electrons into higher alectronic levels or, at higher energies, release
of the intermolecular binding potential when atoms are dissociated from the

particle, or, at still higher energies, release bound e.ectrons from the par-
ticle, ionization; 6. ‘Rotation of the nucleus about a nuclear spin axis.

6The distribution function for the number of particles per ievel, njy, cannot be writ-

ten analogously. nj(i,i) # nex,inin,z’ Rather nj(i,l) = N pex,ipin,i'
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In most cases these internal mechanisms are independent, exceptions are noted below. When
this is the case, the internal mode can be further subdivided into separate contributions
and by analogy with eqn. IIIC-8, we have
. {T) = T T Ty Z (T
Zln( ) Zr( ) ZV( ) Zel( ) n( )

As before when the partition function is a product we can write the properties as a sum

over the separate modes (pin = 0).
. =u +u +u . +u c . =¢ +c +c +c
in r v el n v,in v, r v,V v,el v,n
s, =5 +5s5 +5  +5s
in r v el o

This places even more stress on the determination of the partition functions,

B. The Characteristic Temperature of a Mode

The solution of the Schroedinger equaticn for each independent mode yields its en-
t
ergy levels, viz., for the p h mode, Ep 2 and degeneracy, gp 2" When these input data
L 3

are available the mode partition function is determined in principle.

L .1
Z = e * ITIB-11
. Zgl 250 ( )

In most physical systems, including all of the modes we will investigate, L=«, Hence,
eqn, IIIB-1l is an infinite series. The practicality of using direct summarion to eval-
uate such series is governed by its rate of convergence. Moreover, the partition functien
has little value in itself. Lts value is its relationship to properties. These re-

quire that one take its logarithm and derivative, It 1s, therefore, Zighly advantagecus
that the partition function be expressed as an analytical funetion. Circumstances for
which the partition function can be so expressed are:

1. Exact Series: In at least one important case, the vibrational mode, the series
representation reduces exactly to a transcendental function. In such cases gen~
eral analytical expressions for the property contribution of that mode can be

obtained,
2. Low-Temperature Limit: The sum over levels is arranged in the order of increas-
ing energy, ¢ < g < g » ete, If the temperature satisfies the condition
Pl Ps2 P,3

E
( B2
by a few, often one or two terms.

- Ep l)/kT >> 1 the series converges rapidly and is adequately represented

- _fkT ~e_ . /kT
1 P2
Z(T) = e P» + a ?
p() 8.1 8p,2
3. High-Temperature Limit: If the spacing between the adjacent energy levels is small,
(Ep 441 Ep E)/kT <<1, then the rate of convergence of the series is slow and it
can be represented by an integral,
L - Q/kT L ~e {L)Y/KT or €p,max -¢ /KT

z =} g P Ps =J- g (e F de = g (c)e P de
P 21 P 4=y P ©p,min P P

(
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Note that if one is to use the first integral representation both, the degeneracy

and the energy must be expressed in clesed form as a function of the level index,

gp P gp(l) and Ep ' ep(l). And if the second integral representation is to be used
L »

the degeneracy must be expressed as 4 function of the energy, gp P gp(E*}'
k] L

Referring to the first of the Preceding three possibilities, when the series is ex-
act, e.g., the vibrational model, representation as a transcendental function is the pre-
ferred evaluation method. The last two methods are asymptotic temperature limits thar
exist for all modes. They are important not only for their analytic simplification, but
alsa for their physical significance. Im {ts low~temperature limit a modz is unereited,
It then contributes no more than 4 constant to properties. (The constant ig frequently
zero.) In the high-temperature limit a mode 18 fully excited, It is interesting to note
that discreteness of the énergy spectrum is central to the low-temperature asymptote (this
is the quantum limit). But in the high-temperature 1imir energy can be viewed as contin-
ucus; this is the classical, or Newtonian limit.

Each mode has its own limits, (A high temperature to one mode may be low to another,)
Therefore, the most significant characteristic for each mode is the parameter that dig-
criminates between its high and low temperature limits. This parameter is identified by
noting that the quantized energy levels can always be expressed in the form

£ =B f (2 (I11C-12
Pyt P P( ) )

in which fp(ﬁ) is a dimensionless function of the lewel index, £ (or equivalently of the
quantum numbers). Since the index is the positive integer series, fp(R) is a discontin-~
uous function; it expresses the quantization of energy. The coefficient Bp has dimensions
of erergy., It contains the physical characteristics of the mode, We will find chat the
incremental changes in the quantum index function fp(z) are of order one, fp(1-+l) -fp(i)
~ 0(1). Therefore, it is Bp that discriminates between the mode's high and low temper-
atures. The physical significance of Bp is more recognizable if its values are

reported with dimensions of temperature, The characteristic temperature of a mode is
defined as

B
ep = —kP- (TIIC-13)

Exercise 1. The energy states for the particle in a box, tramslation of an independent

particle, were found to be

2
etr(i,m,n) = h2/3 (22+m2+n2)
8m™y
where &,m,n=1,2,3, ... . Identify the discrete dimensionless function of the quantum

numbers £,..(%,m,n), the physical coefficient Btr and the characteristic temperature gtr
for this mode. .

Since we will use values of the characterisric temperature to describe the properties

of each substance in each mode, it is convenient to formulate the parcition function and
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its limits explicitly in terms of ep. In this form the general series is

L -[f (l)Sp]/T
Zp = 2 8,z © P (I1IC-14a)
And the low-and high-temperature limits are

-[£_(1)e 1/T -[£_{(2)8_1/1 C-14b
Z =g e P + g a P P (T11C-14)

P{T<<e P>l p,2

P

L -[E()8 17T (IIIC-1l4c)

= J gp(ﬂ) e di

A
P|T>>9 2=1
P
These relationships are applied to the external and internal modes of gaseous particles in

the following section.

IITI. THE CHARACTERISTICS OF ENERGY MODES

The characteristics of independent indistinguishable particles can be separated into
a single external and several internal modes. In this section we develop expressicns for
their individual partition functions and property contributions. We begin with the exter-

nal mode.

A. The External (Translational) Mode

The external energy of independent, indistinguishable particles results from trans-
lation. The quantum mechanics of independent particle translation were treated ia Unit
IIIA. In the form of eqns. ITIIC-12 and 13 (see Exer. 1) the translational energy states
are

*
Etr(l,m,n)' = ketr(m ,V) « £(1,m,n)

h2

8m*v2/3k

2

*
where etr(m V) = f(l,m,n) = (12-+m -%nz) g,m,n = 1,2,3,.,.,

Notice that etr(m“,V) is dependent on the mass of the translating particles and the ex-
tensive volume of their contalner (not the molar volume). To establish a quantitative

feel for the range of validity of the high and low temperature limits of this mode con-

sider the follewing example,

3 .

Example 3. Determine the magnitude of 8¢y for nitrogen gas in a 30 m” room. Particle
mass is determined from definitien 7 of Unit IA.

o' = .. 28.1 kg/{kpmol) = 4.649 + 10" *®xg/part
A 6.023 - 10" part/ (kg mol)

Thus the characteristic temperature is (see Table IA-2 for thg required physical con-

stants) - 2 2 2 -
) s = b2 (6.625 - 10" s /pare)? + 1 kg m”/(Js’) - 5.857 - 1021k

T a3 g 4,649 - 10 %Ckg/pare (30 w273 01,38 - 107223/ (part ¥)

Exmp. 3 demonstrates that Str is extremely small for nitrogen molecules in a room size
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-concainer. Notice that small values of particle mass and container volume tend to
increase atr' The following exercise investigates the limit.
Exercise 2. Hydrogen is the lightest pure substance, Determine the volume of a hydrogen

container which would be required to achieve a value of %:r as high as the lowest temper-
atures that have been achieved in the laboratory,‘MIO“BK.

The preceding problems demonstrate that gases composed of atomic size partinles are
ilways in the high—temperature iranslatiomal limit, T >> etr.7 Thus, it is only neces-
sary to evaluate Ztr for this limit. Application of eqn. IIIC-l4c requires that the de-

generacy be expressed as an analytic function of the level index, gtr(l). But the trans-

lational energy magnitudes have so far been written in terms of state designatiom, i.e.,
the quantum numbers. Thus, we must either transform eqn. ITIC-1l4c to an integral over

the states or derive an expression for the degeneracy in terms of the level index, g

e (s

Or energy, gtr(E)' In Exmp. 4 we use the first, and simplest, method to derive Ztr'

Appendex IIIC-A demonstrates that the other two methods yield the same result and obtains

expressions for gtr for later reference.

Example 4, Tormilate the alternative, state representation of the partition function for
the high temperature limit (i.e., in analogy to eqn. IIIC-l4c). Evaluate the required
integrals (using Table IIIE-1) to derive an analytic expression for Ztr(T,Btr) valid in
the limit, T >> etr

The series representation is a sum over the three quantum number indices. In the high-
temperature limit, T >> etr’ these sums transform to a triple integral.

I (e L SO LML S A A —(22+m2+n2)9tr./T
z _ =3 3 e = f f f e dg dm dn
ET =1 m=1 n=1 2=l m=1 n=1
. . atb ahb . ) .
Using the property of the exponential (e = a ¢ )}, each of these integrals is separable
3
= -22(8 /T) |~ m2(=8__/T) = ui(-e__/T) © r2(-8__/T)
Z _ = {f e kT dg-[f a e dﬂ%-f e tr dn] = [f er d;]
tr 1 1 1 1

3
© 2(-8 _/T) 1 z2(-8__/T)
= [f e tr dg - f e tr dﬁ}
0 0

The second of these two integrals can be expressed as an error fumction

1 g2(-8__J/T) % B \%
tr T _tr
g e d; = 2(ﬂ6 ) erf[( T ) J

tr

7Ia Unit ITID we consider translation of subatomic particles— electrons, photons, and
phonons. We will find that even the mass of an electron is sufficient that free electrons

are usually within the high temperature limit for translation, T »>> etr ol”
’

Ans. 1. £ (2,m,n) = (2 +n’ +a?), B = n?/(em*v?’ 3y, and 8y = b2/ (8m 2 ).
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. L 5
But in the limit 1o {gi@l -0 [ = (_;E) s 1]

=0 £
Thus only the first integral contributes. It is listed in Table ILIE-1. The result is

e 203 /T) T 3/2
7 = {J’ e tr d;l - i(_:i\}
T

tr )

The preceding problem, Exmp. 4, as well as Exer. Al of Appendix ILIC-4A developed Ztr in

. =;1r_)3’2
tr 8\6

tr

the high-temperature limit.

*
gubstitution of the definition of Etr[E hzl(&m V2/3k)] gives the partition functiocn in
terms of physical parameters. To obtain preferred molar units, we simply replace the total
volume with the molar volume, ¢ = nv. Thus,

R S e b e -+ S Rk
Ztr(T’ nv} = HV(HE—ZET—) - qV[Z".ﬂf-ﬂ{'{' 2]
h (¥, h)

Now that ztr has been expressed analytically the property contributions of the transla-
rional mode are determinable. A few illustrations are presented in the following prob-
lems. Results are summarized in Table ITIC-L.

Exercise 3. Apply eqns. ITIC-3 and 7 to develop expressioms for the translational inter-
nal energy and constant volume specific heat.

Example 5. Apply eqn. IIIC-5 to evaluate the translational contributicn to pressure in a
system of independent indistinguishable particles. Examine the contribution of the inter-
nal modes to the total pressure and determine the equation of -state for the gaseous system.

The translational contribution to the pressﬁre is, eqn. LIIC-5.

_ 3enfz  (T,nv)} _ 3/ v

P = RT EE =RT i. n [ nv M = RT(__' in Tf)

(o v 3T 2 av T
T (NAI:) T

Recognizing that the internal partition function, Zin(T), is independent of volume,

L Lo LR
P = Pep ?é; v

We find that a system of independent translating particles in the Boltzmann limit is a
perfect gas.

Exercise 4. Combine the results of Exer. 3 and Exmp. 5 to deduce the translational
enthalpy.

Exercise 5. . Use eqn. ITIC-1la and the results of Exer. ) and Exmp. 5 to write an expres—
sion for the translational entropy in terms of temperature and pressure.

The solutions of the preceding problems demonstrate thar once the partition function of a

mode is knqwn, the determination of its properties 1is relatively straightforward. In the

L\
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following sections we reinforce this general technique by applying it to other modes. Be-
fore we continue, however, we will use the present results to establish the conditions
For which the indistinguishable limit is satisfied.

Qur procedure in this unit is to apply the Boltzmann distribution to indistinguish-
able Bosons an.l Fermions. Thus the results are limited by the indistinguishable limit, n?z
= ngB. The limit was introduced in Sect, [ as corresponding to those conditions for ’
whigh no state is densely populated, nj << gj. Qur development of Ztr and its consequent
equation of state, pG = RT {or p = ndT where nv = N/V = NAf;), allows this vague criter-
ion to be written explicitly in terms of the physical state of the gas. This result is

developed in Appendix IIIC-A, Exmp. Al. The resulting condition is

K2 )32 o 2 3/2
=n [|— = —_——— << l —
1 5f2(2wm*) (ITIC-15)

I,
1 =
&; (kT)

Jmax

This relationship is the test of the indistinguishable limit. To develop a feel for the

kl
limits it imposes, consider the following illustrations.

Example 6. Nitrogen is the principal constituent in air. Does N2 satisfy the indistin-
guishable limit at STP? At its normal boiling point, 77 K?

The answer to both of these gqueries is provided by substituting into eqmn. ITIC-15. At STP

. 1.013 - 10°N/m>
-2
max  [1.38 + 107233/ (pare ) - 300 K]°'?

"

1]

1

3/2
=1,69 -10-7partfstate << 1

. [ (6.625 - 10"34Js/part)2 . J
2n 28,01 kg/ (kg pol) /6.023 + 10°®part/ (kg mol

b ig

And at T =77 K, p=1 atm, nj/g < 5,06 - lO—Gpartfstate << 1. Clearly N

NBP 3 | max
within the indistinguishable limit under beth of these conditicns,

2

Exmp. & shows that N2 gas will not be encountered under conditions that do not satisfy the
indistinguishable limit. Examining the criteria, we see that high pressure, low molecular
weight, and especially low temperatures (53/2 exponent) tend to invalidate approximation
IIIC—LS.8 Thus, the molecular gases that are most likely to violate the criteria are ~

those of lowest boiling temperature.

8The indistinguishable limit 15 separate from the independent particle, perfect gas
limit. But their parametric relationship to pressure and temperature is of the same form.
Thus one frequently finds that when one limit is satisfied the other is satisfied also.

= (h2ian% 3/2 3 _ 1B * _ _ -27
lAns. 2. V (h*/8m Strk) . Using etr 10 K and mH2 = MH2/NA = 3.32 - 10 " kg/part, we

find V = 1.31- 10-1853, This corresponds to a cube whose sides are about 1 um. To
Fchieve higher wvalues of etr a smaller box would be required.
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Exercise 6. Helium has the lowest normal boiling temperature, 4.22 K, and is therefore ‘
the most likely gas to be encountered under conditions that violate the indistinguishable

limit, What is the value of nJ/gJ!maK at its normal boiling point? If n, /gj] =102

part/state is accepted as a boundary of the indistinguishable limit, at what temperature
would helium gas cross that boundary at atmospheric pressure?

The solution of Exer. 6 demonstrates that helium gas violates the indistinguishable
limit at temperatures near its mormal boiling point. The normal isotope of helium, Hea,
is. a Boson. Its unique separation into two liquid phases is a result of what is called a
Bose degeneracy, occurring when this system leaves the indistinguishable limit.

The translational (external) mode accounts for the motion of a gas molecule- our par-
ticle. We have restricted our efforts to determining its conttibution to the partitiom
function and properties, leaving detailed consideration of the distribution of particles

among the translational energy levels, G e for Unit IIIE. In that unit we will see

that the speed distribution is a principal imput to the determination of the transport
properties of gases. In the following section we begin consideration of the particle's
internal modes. These account for the motions of the atoms within the molecule relative
to its center of gravity, as well as the motions of the electrons "and nuclei within the

atom relative to its center of gravity. We begin with molecular rotation.

B. The Rotational (and Nuclear Spin) Mode

A principal internal moede is the rotation of the molecule
about its center of gravity. The rotational components of a
molecule can be resolved into its three principal moments of

inertia, Ix’ Iy and IZ. For simplicity we first consider lin-

ear molecules, T =1 >> I (see Fig. ITIIC-1). The energy
x ¥ Z Fig. ITIC-1. Rotation
of Components of a
Linear Molecule

levels and degeneracy for linear rotators are obtained from

Ans. 3. anZ_ (T,nvy , 3/
— - -2 tr v (?wmur) _ w2 3 L33
u _ = Rr [___a'r ]_—RT {JT Q.n[ =R >F) =5 &
v

3 (Nﬂh)
3u

- tr 3z

and Cy,tr ( a'r)— =3 R
v
Ans. 4,
Ans. & _ sl @5 -3m
a2 = - + | = — RT
tr Yer + ptr 2 T 5" 2
Ans. 5. . u = - ¥ 83/
AnsS, o s -7 ._trg ﬁln(ztr + R RT | Run (E% 2rm kT + R
ex tr T SN T p hZ
*23
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THE CHARACTERISTICS OF ENERGY MODES 15

a solution of the Schroedinger equaticn (Refs. l, 4 or 5). 1In terms of its single moment
of inertia (I = Ix = Iy; Iz = 0}, the results, written in the form of eqn, IIIC-12, are
2

h
gr,x - Brfr(i) Br ~ 8r21

fr(z) = £(2+1) gr(.%) =(2L+1) 2 =0,1,2,3,.,

Notice that this quantum number series, L, begins with zero, and that the minitwum rota-
tional energy is zero, i.e., no rotation. Following our procedure, the rotatiomal charac-
teristic temperature is defined by {eqn. ITIIC-13)

B 2
e = —k— = 2
r 87Tk

Notice that Br is based on the only nonzers moment of the linear rotatar. This corre-
sponds to the principal, largest moment of linear molecules, Linear molecules include
all diatomic molecules and polyatomic molecules whose atoms form a single line.

The values of er for a number of diatomic and linear polyatomic molecules are listed
in Table ITIC-2, All of them are much larger than the translational characteristic tem~
peratures of the preceding section,? However, when we compare each substance's 8 to its
region of gaseous states, we conclude that only hydrogen and a few of the llghter hydrogen
compounds have characteristic temperatures high enough that they exist in the gaseous
gstate at temperatures on the order of 8 . Thus, the rotational states of the wast major-
ity of diatomic gases need only be considered in the nigh temperature limit, T >> 6 . The
following example develops the rotational partition function for linear rotators in thls
limit.

Example 7. Evalua;e the rotational parctition function of a rigid linear rotator in the
high temperature limit, T >> 8 .

In the high-temperature limit the partition function sum is accurately approximated by an
integral

o -0{8+1)8 /T = -2 {a+Lg /T
z_= § (20+1)e To=f (2u+1)e Toae
Yoedp 0

Evaluatlon of this integral is facilitated with the transformation, £ = L{L+1),
= (28+1)dR, £ = Owhen 2 =0 and § == as ¢ + =, Thus,

™ -£B /T
r - L
Zr=fe dg_e .
0 T

From Exmp. 7 the partition funection and (using eqn, IIIC-10) the probability distribution

for linear rotators in the high temperature limit are
—1(£+l)6r/T
B (2L + e
T - _
Z_ = S p =

r r,L T

-

3The fact that 8z >> B¢, indicates that the spacing between rotational levels is
much larger than that between translational levels. By comparison, the translatiocnal
energy is almost continuous.
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Within the constraincs imposed by the high-temperature limit, we can use thege results to

investigate the distribution of the particles over the rotational lewvels,

Exercise 7. Determine the proportion of oxygen molecules at room temperature that are in
the first, second, tenth,and one hundredth rotatiocnal level, ~

The answer to Exer. 7 demonstrates that linear molecules are distributed broadly over
the rotational levels at elevated temperatures. It also shows that there is a level of
maximum occupation. This level can be determined by differentiating the rotational dis-
tributicen function,

Example 8. Derive an expression for the level index of the most heavily occupied rota-
tional level in the high temperature limit.

The level of greatest occupancy is defined by the condition, dpr(ﬂ)/di = 0, Then since

do (1) B L(e+1) (=6 /T)] 6 8 L(2+1) (=8 /T)
_;T_ = d_df,[Tr(ZHl)e t } = %[2 -Tr(u+1)2}e *

Setting this derivative equal to zero and simplifying we obtain: (-2T/8r-%4£2-+&i-+l) =0,
Or using the quadratic formula and eliminating the root corresponding to negative values
of &,

A

fT)z 1
L= -=
max |28 2
r
Recognize that this expression will not vield an integer value for ‘max+ We have used a
continuous representation of £. The result should be interpreted as the nearest whole (

number,

Exercise 8. Use the formula developed in Exmp. 8 to determine the rotational level of
highest occupancy in oxygen at room temperature.

Consideration of linear rotators is simplified by the fact that they have a single
appreciable moment (IX =1 =1, IZ = 0). Nonlinear molecules {polvatomic molecules whaose
atoms da not form a line) have three appreciable, potentially distinct moments. As a re-

sult nonlinear polyatomic molecules have three rotational temperatures, 8r < Sr v and
> r

Gr 2 (Fregquently two have the same value.) The solution of the Schroedinger equation

and the evaluation of the partition function serles is complicated by the presence of three
rotational modes. Fortunately, there are no nonlinear molecules with even a single rorta-
tional temperature large enough that its gaseous states are not withia the high temper-

acure limit T >>4 Thus we need consider the rotational partition function

8,9
T,x T,y r,z
for nonlinear molecules only in this limit,

Ans., 6. Following the same procedure as thar of Exmp. 6, we find at the normal boiling
point of hellum [p = 1.013 - L0°N/m?, T = 4.22 K, M = 4.003 kg/(kgmol) | that n. /g | ..
= 0.134. This certainly does not satisfy the indistinguishable limit., To establish a
boundary, we arbitrarily setn-/gj ax = 10-2 and solve for T{im = 1L.9 K. Thus helium gag

5l x » ] » 3 : k3
at atmospherie pressure satisf&es g%e indistinguishable limit above about 12 K. (f
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E+?

!

3/2 .
Z = E'!%L} where 8 = (8 L g 1/3
T T \3 r r,X r,y r,2

T

values of er for a number of nonlinear molecules are included in Table ITIC-2.

The preceding paragraphs modeled linear molecules as rigid linear rotators (I = Iy
x
=1, Iz = ). <Clearly, this is an approximation. The moment of inertia for rotation

about the molecular line of centers (the z axis of Fig. IIIC-1) is not zero; it is only
very small. This moment is essentially the sum of the moments of rhe in-line atoms for
"auclear spin." (Even though the electron orbital radii are comparatively large their
mass is low enough that they do not appreciably affect the moment.) Nuclear radii are ex-
tremely small in comparison to intermolecular spacing, therefore the nuclear spin moment
is many orders smaller than the molecular moment. Noting that Br is inversely propor-
tional to the moment of inertia, the fact that an U lOlOK should not he surprising. Thus,
nuclear spin is not excited except at extremely high temperatures. !0

Insofar as nuclear spin is independent of molecular rotation, the determination of
the effect of spin on properties is a simple matter. But for molecules with one or more
rotational symmetry axis, they are not independent. TFor example, consider diatomic mole-
cule elements.

Molecular Rotation-Nuclear Spin Coupling, Diatomic molecule elements are com-
posed of two identical atoms. Such molecules are called homonuclear. The
identical nuclei of homonuclear diatomic molecules are indistinguishable
particles within the molecule. If these nuclei have an odd number of protons
and neutrons, they are Fermions {e.g., hydrogen with a single proton). If they
have an even number, they are Bosons (e.g., deuterium with one proton and one
neutron}. It was noted briefly in Sect., [IB of Unit IIIA that Fermions have
antisymmetric wave functions with respect to an exchange of identical parri-
cles and Bosons have symmetric wave functions. Further, when the ends of a
diatomic molecule are exchanged, it reverses both its spin and its rotation.
Thus the states of these separate modes are altered simultaneously by an exchange
of identical nucleqi . They are coupled and the product of the spin and rota-
tional wave function must be even aor odd depending upon the character of the
nuclei, For example, if the nuclei are Fermions, then rotational states with
an even wave function require a simultaneous spin staze of odd wave function,
and vice versa,

As explained above, rotational-nuclear spin coupling complicates the determination of
the parcition function and properties of the rotational-nuclear spin modes of molecules
with rotational symmetry, particularly in the range, T Br. But the only symmetric mole-
cules that are gases in this range are hydrogen and deuterium. Indeed, rotation-~spin cou-
pling is the basis of the distinction between ortho and para hydrogen. 1In the interest of
simplicity, we forego explicit consideration of the general case(see Ref. 1, 4 or 3), but

will conrsider only the high temperature lipir of rotation-nuclear spin ccupling, In this

'OThere are instances, e.g., nuclear magnetic resonance {NMR) spectroscopy in which
nuclear excitation is magnetically induced,
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limit the nec effect of spin on the cecmbined partition functien, Zr n’ is division by a
L

constant called the symmetry rumber, 5.11  The symmetry number is equal to the number of
indistinguishable molecular orientations that can be achieved through rotational trans-
formations.

Thus, the combined rotation-nuclear spin partition function for all molecular types

can be summarized in the very bread temperature range defined by Gr << T << ens.
Momatomic. The rare gases and most metallic vapors. o -1
In the absence of a molecular bond only nuclear spin r,n
moments are present.

Asymmetric Linear molecules include all hetercruclear
diatomic molecules {e.g., CO, HCl, NaCl, etc.) and

linear polyatomic molecules that are not symmetric zZ =
about their centers of gravity. These particles

have no indistingueishable molecular orientations.
Their symmetry number is ome, ¢ = 12

UThe results listed below are simplified by the omission of the nuclear degeneracy.
In the temperature range of interest, T << Bng» nuclear spin is unexcited and the parti-
tion function series is accurately represented by the first term. Further, the energy of
the lowest nuclear (ground) level is zero. So the partitien function of each nuclieus is
equal to its ground level degeneracy. The nuclear partition function for a molecule is

zns = @ g; i/G. This partition function is a constant at ordinary temperatures. It wiil
1 s

not influence the value of any property determined by a derivative of Z. Only the magni-
tude of the entropy is dependent on constants in the partition function. Thus, both com-
ponents of the nuclear partition function, gn and ¢, can be omitted in the analysis of a
given substance. But if the character of the molecule is altered, ¢ is necessary; and if
the character of the nuclei are altered, gj is necessary. The results listed in the text
are valid for chemical reactions but must be reformulated toinclude gn to be valid for
nuclear reactions.

12gince there is no rotation-nuclear spin coupling in asymmetric linear molecules,
the entire range of the rotational partitien function series can be employed to determine
properties., Application in the range T/er > 1 is simplified by an approximate representa-
tion of the exponential partition function series in pelynomial form.

2 ) 3
3 - 30 sl o]

/1'1(}

Ans, 7. For oxygen at room temperature, 8r/T = 2 09 1/300 K =6.97 1073, This is cer-

tainly within the high-temperature limit. Thus, for tge 15t Jevel (L =0)
p (0) = 6.97- 1073+ (e’ " *77" 1077, 0,697 - 10-2
2nd level (L =1) -2+6.97 - 10~2

L) = 6.97- 1073« (Be = 2.06-10"2

Similarly, for the 10th Level (£=9) p_(9) = 7.07 + 107 and the 100th level (2=99),

pr(99) = 1.49%10-30,

L
Ans. 8. [n oxygen at room temperature T/0_ = 300 K/2.09 K = 144. Thus, 2 .. = (144/2)72

~ 1/2 = 7.99 or £ = 8. This is the 9th level and its gccupancy 1s p(8) =omax==0.0717.
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Symmetric Linear molecules include all homonucilear

diatomic elements and linear polyatomic molecules T
with a symmetry axis about their center of gravity. Zr a = 25
These particles have two indistinguishable molec- ’ r

ular orientations, 0 = 2.

Yonlinear Polyatomic molecules can have none or many
symmetry axes. Each molecule must be examined as an
individual case, g = ? (see Table IIIC-1 and the r
following exercise).

3
1]

Exercise 9. Identify the indistinguishable molecular orien-
cations possible with the following molecules as sketched:

The contribution of the rotational-nuclear spin modes teo the properties of each type
of gaseous molecule is readily completed for each molecule type using its listed combined
partition function. The required parameters, g and Br, are listed in Table IIIC-2. The

following problems illustrate the procedure. Complete results are given in Table IIIC-1.

Exercise 10. Determine the combined contribution of nuclear spin and molecular rotation

to the properties of monatomic gases.

Example 9. Determine the combined rotation-nuclear spin contributicn to the internal en-
ergy, specific heat, and entropy of a gas composed of nonlinear polyatomic molecules.

Properties are determined by application of eqms. ITIC-3 te 7. The internal energy and
specific heat contributions are

=y 3/2 Ju
= _z23 |, 1 L Er2(3) 233 - o (Zem) L33
5, L = RIS [mnc(ér) } Rt (55) = 3 Re S ron (aT )v =R
The entropy of an internal mode is given by eqn. IIIC-1lc. P/
- ar = 3 = = ’H%TB/Z
s =-—2% 4+ Rin z =—R+R£n—€:—)
r,n T r,n 2 aJ Sr

Exercise 11. Determine the combined rotation-nuclear spin contribution to the internal
energy, specific heat, and entropy of a gas composed of symmetric linear molecules.

C. The Vibrational Mode

on
T S

The spacing between atoms in a molecule is determined by a bal-

ance of forces. Molecules are formed by ionic or covalent bonds be- |
tween its atoms (see Unit ICS, Sect. I). These attractive bonds are

balanced by repuision (interference between the separate electron

clouds of the atoms) if the atoms draw too close, This balance is Fig., IIIC-2.

represented for the atoms of a diatomic molecule in Fig. I[IIC-2, Vibrational Levels
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(Note the similarity to the pair potential for molecular collisioms, Unit ICS.} Near its (
minimum this potential can be quite accurately approximated as a parabola. When the para-
bolic-linear spring-potential is introduced in the Schroedinger equatiomn, the resulting

energy levels and degeneracy are

1
e = B = = —_— = =
v, va(z) Bv b fv(z) (2+.2) gv(ﬁ) 1 *=0,1,2,3

This quantum number series, &, also begins with zero, but the minimum energy is not zero,

= hv/2. CEFach increased energy level represents z larger amplitude (from one side of

EV,O
the parabolic potential to the other) single frequency (simple harmonic) vibration of the
atoms about the mean bond distance. The vibrational energy levels are ncondegenerate. The

vibrational characteristic temperature is given as

5

A = = ———

v k k
Diatomic molecules are bound by a single molecular bond. Thus they have only one mode of

molecular vibration. The partition function series can be represented as an analytic

function without approximationl3
1 : -
= -(#3) 8 /T -8 /2T = (-6 /'1‘)’2 o, /2t
= v v v _ e
e TN Y e
=0 =0 v
l-e
Since Zv is represented as an analytic function, the vibratien mode distribution can be (

determined in general. That is, without recourse to low or high temperature approxima-
tions. This is fortunate since vibratilon characteristic temperatures range from below
normal to moderately high temperatures. Therefore, one commonly requires vibrational

properties near the various characteristic temperatures. The probability distribution for

-4 /B, -8 /T ¢
pv(ﬁ.) = (l—e v )(e v )

Exercise 12, Determine the percentage of particles that are in the 1st, 2nd, and 10th

vibrational level at the following temperatures: T = 0.1 SV, Bv, and 10 Bv.

a vibrational mode is

The results of Exer. 12 show that the population in the vibrational levels shifts from the
lowest toward higher levels as the temperature increases with respect to ev.

The contribution of the vibrational mede to the properties of a diatomic gas is de-
terminable from ZU and its derivatives. Results are listed in Table IIIC-1 and illus-

trated in the following exercise,

Exercise 13. Derive expressions for U c, v and s, for a diatomic gas.
H

-

13The infinite series is of the form

I <=t x| <1
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A diatomic molecule is formed by a single molecular boad; it has one mode of inter-
molecular vibration. A polyatomic molecule has at least two bonds. The number of modes

of molecular vibration exhibirted by a polyatomic molecule can be determined as follows.

Modes of Molecular Vibrution. Consider each atom within a molecule to be a
separate mass point. A mass point has three independent directions of motion—
three degrees of freelom. Thus, the total number of degrees of freedom asso-
ciated with the n, atoms composing a molecule is 3n,. The traaslation of the
molecule accounts for the three possible directions of motion of the center of
gravity of the molecule. This comprises three degrees of freedom. The rota-
tional mode models rigid body rotation of the atoms about the particle's center
of gravity. For linear molecules rotation in the two planes of nonzero moment
uses two degrees of freedom. For nonlinear molecules the three planes of rota-
tion use three degrees of freedom. All remaining degrees of freedom of the n,
atoms must be accounted for in intermolecular distortions. Thus, the number
of modes of molecular vibration in Linear and Nonlinear Molecules respectively,

are

p, = 3n, - 5 P = Bna - b (IIIC-16a,b)

Exercise 14, How many vibrational modes are present in the linear molecule CO2 and the

nonlinear molecules H20 NH3 and Cﬁﬂﬁ

The natural frequency of each vibrational mode, Up’ defines its individual character-
istic temperature, BV (= hvp/k). {(Modes with the same characteristic temperature are

common.)} At temperatures not more than an order above the lowest value of BV b these

Ans. 9. There are two indistinguishable orientations of a water molecule, g’%\ g }
as shown. Thus the symmetry number for water is g = 2,

Methane can be rotated through three indistinguishable positions

with any of the four hydrogen molecules on the axis of rotatiem. ib
.iThis must be repeated with each of the four hydrogen atoms on the( Q;/ QJEP e

axis of rotation, thus o = 3 -4 = 12.
The hexagonal benzene molecule can be rotated through . .
six indistinguishable positions. Then the melecule P . ¢ .
can be rotated on a vertical axis to give a new indis- .ee
tinguishable orientation. In this new orientation the 3 ¢ f
c 4 P

previous six horizontal rotatioms can be repeated.
Thus, ¢ = 6+ 2 = 12,

Ans. 10. For monatomic gas 2, = 1. TheninZr q = W 1 = 0, Thus, spin-rotation does
not contribute to the propertles of monatomic gases in the temperature range T << B,
[A more complete treatment would be Z, _ = g7 (= 2 for monatomic gases), see footnoce 11.

Thus there is a constant contribution Eo entropy and functions of entropy, but none to
other properties,]

Ans. 11. _ 5 _ du_ _
ur,n = LBT} (Eg— a = BRI and cv(r,n) = ( oT ); =R
. v
G —
;r’n=—"'T!—+Rmz’ =R+R£n(2e)
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22 MICROSCOPIC CALCULATION OF PERFECT GAS PROPERTIES

modes can be considered independent simple harmonic oscillators.!“ When this is the case, (:

each vibrational mode has its own partition function and

p -Gv,p/ZT

P e
zv = I Zv,p =T -6 /T
p=1 p=l |, _ o v.p

Values of Bv for a number of polyatomic gases are listed in Table IIIC-2.}° These data

permit the détermination‘of the vibrational contribution to the properties of polyatomic
gases. Since the total vibrarional partition function is the product of the separate mode
partition functions, the total vibrational properties are the sum of the contribution of
the separate modes. Thus, the results of Exer. 13 can be applied to each mode separately,
see Table IIIC-1,

1%As the amplitude of vibration increases several factors combine to distort the
assumption of the independent, simple harmonic vibrational model, The potential well is
not parabolic at higher energy levels, Fig. IIIC-2. Coupling between vibrational modes
will occur and at high vibrational amplitudes the oscillation in molecular moment will
cause rotation vibration coupling,

15The number of modes of a given frequency are designated by their number in paren-—
theses, ev p(2), etc., in Table ITIIC-2.

Ans. 12. The levels of interest are the 15t (g = 0), the 2nd (g = 1) and the 10th (g = 934 ( .

AET = 0.1 8,

- 1
0,(0) = (1-e 10 >

150 - )
10 Y™ = 4,54 - 10

(e = 099995, o (1) = (1-e7t
40

and p,(9) = 8.19.107"".
Similarly, at T=61: p_(0) = 0.632, P (1) = 0.233, o (9) = 2.87 - 10

v v v v _
and at T =10 6 : o (0) = 0.0861, o (1) = 0,0779, o, (9) = 0.0387

10 0

Ans. 13, ' -8 /21 _ )
1 = ®p? 3 e ! ﬁfzi—-e—“-zn(l—eem]
Yy 3T Y dT |~ 2T
Ll-e v v
. -6 /T
2 v
8 -{3 /Te
_ =2 v v 1 1
‘RT+2T' <8 /T Rojz 57T )
L (1—e ) = -1 -
8/ a8 /T
su r 8 /1%e ¥ R(s /T2 e ¥
: =(_v)=i Ro |Ly_1 -8 -y
v,V AT e T v|2 ée /T—l) V(e /1 2 (ev/T )2
- v @ -1 e -1
- u '(ev 1 e_GV‘IZT ev 1 ( -9 /T)
= =R | i= =Ri{— - 1-
s + Rin2 R T) 2+ 5 /T ) + Rin 57 R(T)(ev/'i‘ in a
(e -1 l-e ¥ e -1
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THE CHARACTERISTICS OF ENERGY MODES 23

Of all the modes to be considered, only wibration is
commonly encountered near its characteristic remperature
(T ~ ev). In fact, for polyatomic gases it is uncommon
for at least ome vibrational mode not to be in such a re- z
gicn. In addition, vibration is the first mode whose prop- “%;EJ

erties can be analytically determined at all temperatures.

(Translational and rotational consideration was limited to

high temperatures, and nuclear spin to low temperatures.) T LO
=

A more thorough study of these modes would reveal that the v{P)

general behaviors of all internal modes are very similar. Fig., IIIC-3. Vibrational
Thus, a study of the relationship between the low, high, and Specific Heat

intermediate temperature properties of a vibrational mode will improve our perception of

properties in general. Fig. IIIC-3 presents a graphical representation of the CV(V ) as
L)

a function of dimensionless vibrational temperature, T/Bv. (The function plotted appears

in Table IZIC-1 and Ans. 13.) At low temperatures c =20. As T =8 , ¢ increases
v,V v V,V

sharply approaching the limit 2(R/2) as T >> ev. Except for the multiple of (R/2) in the

high-temperature limit, these are general characteristics of all modes. We summarize:

Low-Temperature Limit, T << 6, In this limit a mode is said to be unexcited,
Its particles condense into the lowest accessible levels.!® An internal mode's
particles condense into the lowest 'ground" level, Pp,1 =1, Thus, the spac-
ing between the first and second level is very important to the discribution.
This is the quantum limit. Such modes contribute no more than a constant to
properties. The constant is zero for the specific heat.

High-Temperature Limit, T >> 6. 1In this limit a mode is said to be fully excited.
The particles are distributed broadly over many levels. The spacing between
levels is negligible in comparison to the average energy of the particles.

Thus, energy can be considered continuous, This is the Newtonian or classical
limit of the mode. The energy contribution of modes is a constant_multiple of
RT/2 and its specific heat contribution is a constant multiple of R/2.17

16The low=temperature limit of the external (translational) mode is complicated by
the consequences of particle symmetry. Bosons condense into the lowest level in a manner
similar to that discussed above. But Fermions are limited to no more than a single par-
ticle per state. Thus they will crowd into the lowest available empty states. The dis-
rinction between these two distinct low-temperature "degemerate'" conditions causes their
low-temperature behavior to be quite different. Unit IIID treats free electron behavior
in metals. This is an illustration of degenerate Fermion behavior.

17the fact that the classical limit contribution to the energy is a multiple of
kT/2(k = EINA) per particle is called the equipartition of energy principle. It requires
that the discrete energy spectrum approach a continuum {the high temperature limit) and
that the energy be expressible in a quadratic form (Ref. 4, pg. 72). These characteris-
tics are shared by the tranmslational, rotational,and vibrational modes.

i = ® - = = © - = R P
Ans. 14, P,Z’C02 33 5 4, PnE,Hzo 33 6 3 i, NH

3-12 - 6 = 30,

=34 -6 =6,
3
P

ni,C6H6
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24 MICROSCOPIC CALCULATICN OF PERFECT GAS PROPERTIES

From the preceding discussion, it should be clear that one cannot talk abour high or low

temperatures without qualifying which mode or modes are meant.

Exercise 15, Verify the low and hig@ temperature asymptotes represented in Fig, ITIC-3 by
applying the corresponding limits to the vibrational specific heat function (see Exer. 13).

) o, 2 E!EJV/'I‘
cv,v = R-Er) 78 /T 2
v
")

. X
Hint: Use the fact that e® =y a5 X == and eX = 1 + x as x =0,

D. Electronic (Dissociation) Mode

The bound electrons of an atom are tied to its nucleus by coulombic attraction. For
a single electron (hydrogen) atom the Schroedinger equation can be solved to obtain the
electronic energy levels and Eheit degeneracy,
94“’: 1 2
Eel,H('Q') =Bel,erl(2) _Bel,Hz8 2h2 fel,H(E) =“;7.- gel,l—!(m =24 2=1,2,3,. '
o

*
in which 9 is the charge, me is the rest mass of the elctron, and £, 1is the permittivity

of free space. Notice that the minimum, ground level, energy is negative. Work must be
dene to remove the electron Erom the atom, That is, energy must be added to icnize the

atom. The electronic characteristic Lemperature of a hydrogen atom is

4 *

em
g = _EAAE - —
el,Hq k Se:hzk

Exercise 16, Determine the magnitude of the electronic characteristic temperature of a
=AETe1se 16

bydrogen atom.

The solution of Exer. 16 shows that Sel,H'blosK. Thus even at combustion level tempera-
tures, a hydrogen atom's electronic mode is unexcited. It would contribute no more than
4 constant to properties, and nothing to property changes, 7

A solution of the Schroedinger equation for a multielectron atom requires that repul-
sion between the like charge electrons be dccounted for in additionm to their attraction to
the nucleus. This problem is as yer too difficult for exact analytic solution. Analysis
of a molecule is even more difficult, as the electrons are then repelled by one anéther
and attracted to all of the nuclei, simultaneously. Thus neither the level series nor
eel can be analytically determined for particles that are more complex than the one elec-
tron atom, viz,, the hydrogen atom. Instead these parameters are inferred from spectro-

scopic measurement, 18 4 study of these data shows that the magnitude determined for a

183ince the magnitudes of 8,7 are quite high, only the first few levels are needed.
The pParameters required for the rocational and vibrational modes are also ohbtained spec—
troscopically Fps 9, D But since the model is vaiid only a single parameter is needed.
¥
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~HE CHARACTERISTICS OF ENERGY MODES 25

svdrogen atom, Exer. 16, is representative of all atoms and molecules, eel'uLOBK. Thus

we can determine the properties of given independent indistinguishable atoms or molecules
at ordinary temperatures without regard to the electronic mode,

As the temperature of a gas increases,its electronic mode begins to be excited.
Electronic excitation affects the properties of the substance in a manner that is similar
to other modes. However, electrons that are sufficiently excited will dissceiate from the
particle creating a plasma- a mixture of free electroms and positive ions. This radically
changes the electric properties of the gas; it becomes conducting. Thus the electronic
mode is significant at somewhat lower excitation levels than other modes. Finally, when
particles are altered as a result of a chemical reaction, atoms are shifted from one type
of particle to another. This requires dissociation of atoms from the participating mole-
cules. The energy of molecular dissociation is normally reported in terms of electronic
energy levels. Thusg the change in the electronic partition function is a principal term
in the evaluation of the effects of chemical reactions even when the electronic modes of
the reactants and their products are unexcited preceding and following the reacticn. The
use of the electronic mode in the study of ionization and chemical reactioms is considered
briefly in Appendix IIIC-B,

This concludes the development of the umit. The following section summarizes- the
contributions of translational, trotation-nuclear spin, and vibrational modes for given
particles,

IV. PROPERTIES OF MOLECULAR PERFECT GASES

The preceding sectioﬁsconsidered external translation and each internal mode of a
molecular gas. We found that property changes that occur to a given substance can be
determined considering only its translationmal, rotatiomal-nuclear spin, and vibrational
modes. The necessary data (ar, g and ev,p) are provided in Table IIIC-2Z. Analytic ex-
pressions for each of the required partition functions Ztr’ Z n and Zv’p were developed,
and the procedures by which their corresponding properties are determined were illustrated
by example and exercise. Complete results are summarized in Table IIIC-1. The objective
of this section is to combine the effects of the separate modes to determine overall prop-
erties. Since our eventual interest lies in property changes we choose to ignore the con-
stants introduced by the electronic, see Appendix ITIC-B, and nuclear binding mode; and we
will, therefore, refer to the sum of the translational, rotational-nuclear spin, and vi-
brational modes as though they were total properties.

Example 10 Write an expression for the partition function, internal energy, enthalpy,
specific heats,and entropy of a system of independent, nonlocalized atoms.

—*
We extract the necessary expression for Z, u , S and s from Table ITIIC-1.

3/2

%
) %
Z=2 Z Z = nv(—EEEEE) 11 u =

= RT + 0+ 0
tr T,0 Vv

M
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5/2 * 3/2
- - - -% -
o =2%+0+0=2% 5 = R{Z4an DT [—-—-2”“‘) )
v 2 2 2 ! h J
The enthalpy and specific heat at constant pressure are
R =3 +Rr-33 S eR=2%
=1 'Z—RT CP—CV —2

Exercise 17, Use the functions of Table ITIC-1 and the values of Table IIIC=2 ro deter—
mine ¢, for nitrogen at atmospheric pressuyre at the temperature levels 50, 300, 600, 1500,
3500, and 5000 K. Compare the results to the recommended "near room temperature" value,
Table ID-1. Draw conclusions with respect to the effectiveness of the calculation and the
countribution of each meode.

The results of Exmp. 10 and Exer. 17 demonstrate the meanirg and limitation of the "near
room temperature" specific heat values recommended for monatomic and diatomic gases, see
Tible ID-1. The recommendation for monatomic gases [E: = (3/2) - R, E; = (5/2) * R, and

¥ = 1.67} is simply the translational contribution. Since there is no molecular rotation
or vibration in monatomic gases this approximation is valid for perfect gas states until
the electronic mede is injtiated, T’bloéK. The recommendation for diatomie gases

{E: = (5/2) - R, E: = (7/2) + R, Y* = 1.4] is the sum of the translational znd fully excited
rotational mode contributions. All diatomic molecules except hydrogen and deuterium have
fully excited rotational modes at all achievable gaseous states. (Even these exceptions
occur only at their lowest gaseous temperatures.) Thus in practice "near room tempera-

ture" means from the lowest gaseous temperatures until the vibrational mode is energized,

viz.,, at temperatures above T'bBV/B.

%
Exercise 18. Determine Cp for methane at 200, 400, 800, 1600, and 3200 XK.

Ans. 15. In the low-temperature limit, evfr =$= and exp (BV/T)-l = exp (ev/T)

_ 842 -8 /T
) e V =0

v
S PR
In the high-temperature limit, BVIT =0 and exp (BV/T) =$l-+(9v/T). So

- 2 [1+(5 /T)]
¢ =R§l v = R
v,V

[1+ (BV/T) -13

Ans. 16. The required constants are listed in Table IA-2Z,

k = 1,380+ 10231/ (part K), h = 6.625 - 10~-3%Js/part, e=1.602+ 10-1%/part,
m: = 9,109 - 10~%8;/part, €, = 8.854 + 10-12¢/(Vm)
- - 2
5 . 1.602% - 10776¢% . 9,109 - 10 e - (A J/cw)
s @50 1074 )2 (6.625)7 - 1078 (1 220 1,380 - 10- Py )k

= 1.579 - 109k ~_
¢
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Exer. 18 shows that the specific heat of gaseous methane varies at all temperature
levels. Its lowest vibrational excitation is initiated below normal temperatures and one
or more vibrational modes contribute variably as the temperature increases. This is rep-
resentative of all polyatomic molecules. So the assumption of constant specific heats is
a poor approximation for the analysis of polyatomic gas molecules.

It might be noted that both Exers. 17 and 18 require that E* be evaluated at temper-
atures at which their respective species are not perfect gases aE atmospheric pressure,
Even though the substance is not within the perfect gas region its perfect gas properties
can be calculated. We will find that the general method of dete-mining imperfect gas and
condensed phase properties, Units IVD and IVF, is based on their deviation from a perfect
gas reference value. Thus a prediction of perfect gas properties at all temperature
levels is an essential step in property determination. The methods developed in this unit
have been emploved to compile an exhaustive collection of perfect gas properties, the
JANAF Tables.19 Exers. 17 and 18 have shown how the E: data is computed. The following

problems demonstrate the compilation of enthalpy and entropy.

Example 11. Write expressicns for the enthalpy and entropy chamge of carbon dioxide.
Determine the wvalues of these changes from 298 to 500, 1000, and 3000 K at atmospheric

pressure.
Carbon dioxide is a linear polyatomic molecule. Its enthalpy is given by {(see Table

I1IC-1).
4
—% —* % -k - - J7 1 1 \
= + = Z T+ 8 e
hi(m) =u (D) + ur,n(T) +u (T) +RT = R(5 T pgl v.pl2 ( 5, pro ) J
= . 1
Thus, the enthalpy change is e
4
—% % -17 1 1
- = = e - + -
h (T) h (To 298 K) R 5 (T To) L ev,p ; Bv p/T ev p/To )
P e - e -1

The entropy and entropy change are written in an analogous manner. We write only the en-
tropy change, thus eliminating .the comstants and pressure dependent terms,

s r R{Z T/T ) + zf I [ S
s (T, latm) -5 (TD, 1 atm) =R 3 wn( 0) Lo % 57T
p= le VP -1
—ev /T -

- 1 ] -in 1_‘%___’3__ 0 Bhm- 7Ty o« 3L amm - 3T, 1 aza)

9 JT IJ -8 /T, - -

V,P 0_1 l-e V,P

To & ’ 500 999.4 1.540 -

Table IIIC-2 gives the necessary vibrational tem— ;:x ;:z ;:i:
peratures: 960.1 X (2), 1932 K, 3380 K. Thus
we find

Exercise 19. Determine the enthalpy and entropy change when carbon monoxide is heated at
atmospheric pressure from 298 to 1000 K. (Answer on pg. 28.)

19The JANAF Tables include the electronic mode, coupling between the rotational and
vibrational modes, and other effects which allow greater accuracy.



28 MICROSCCPIC CALCULATION OF PERFECT GAS PROPERTIES

It should be noted that the determination of these property changes were independent of
both the symmetry number and the rotational characteristic Lemperatura, ¢ and Gr. A de-
termination of the absolute entropy requires these parameters, The JANAF Tables tabulate
absolute entropy, but the tabulated enthalpy is relative. Hence the constants employed
are different from those of the above formulations, 20 In other respects the results of

this section are compatible with the JANAF compilation.

20The entropies of the JANAF Table are referenced to absolute ZEYTO Ctemperature, The
tables permit a determination of absolute enthalpy using the enthalpy of formation of each

molecule from its constituent elements, This determination is ‘dependent on the electronic
dissociation mode, see Appendix ITIc-B.

Ans. 17. HNitrogen is a homenuclear diatomic element, hence
& /T

A + T +R=-R241 (9,‘,)2 = +1
=« c [ = — 4 -+ —_— —_—
cp v, tr v(r,n} v,v R 2 T ( E?V/T 2
e -1
For nitrogen BV = 3392 K. Then substituting we obtain THG 30 100 660 1300 1500 s000
. C‘
The normal boiling point of nitrogen is 77 K, Thus at T 350 1502 1613 ateh s.ezs s.ae

50 K atmospheric nitrogen is condensed and Ep is not =
appropriate. Up to 600 X the vibrational mode is unexcited, c*5=(7/2) R, the 'near room
temperature value." At 5000 K the vibrational wode is almost fully excited (E;-*Q/Z R);
but at this level electronic excitation is beginning and cannot be vverlooked.

Ans, 18, Methane, CH,, is a nonlinear molecule with 5 atoms. It has 9 vibrational modes,

Hence . . 5 BV T
“*=E*+ﬁ—§§.+§+z (_V_’B}_E_—’F.’ + 1
“p T % 2 T3 T 6 7T 2
p=1 wp
e -1
Fortunately there are only four distinct values of Bv Yot 00 00 800 1600 3200
1879 K (3), 2207 (2), 4196 K, and 4343 K (3). Thus, 'P .
%ﬂ 4336 4371 7.5n9  10.65  L2.%9

Ans. 19. Carbon monoxide is heteronuclear diatomic. Thus, its enthalpy and entropy
change are '

~h % - 17 1 1
- = - - <+
h (T) h (TO) R 5 (T To) ev

( B /T ] 1) - (esv/'ro “ 1)

. e
T
% —* - ]7 a 1 1 l-e
s (T, latm) -5 (Tc].atm)—R 2 RQT. 3] T

&
v (eeV/T-lJ - %i (EGV;TD—l)fqin _e-eV/TO,f

% —% .
Then substituting 8y = 3121 K, we obtain [h (1000 K) - h (298 K))é = 2601 K,

(s*(1000 K, 1 aem) - s*(298 K, 1 atm)[/R = 4.336.

-6 /T
v

{
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APPENDIX IIIC-A

FURTHER CONSIDERATION OF THE TRANSLATION MODE

Exmp. 4 develops Ztr using the states formulation. This is the easiest and therefore the
preferred method. But developments to be completed in Units IIID and ITIE require formu-
lation of particle distribution over translational levels. Specifically, an analytic ex-
pression for the degeneracy, gti, is required. The following example uses the result of

CLxmp. 3 to deduce this function.

Example Al. Exmp. 4 formulated Z¢y 1in the limit T >> 84, as a triple integral over the
guantum numbers. I[n a geometric sense the quantum numbers were the coordinates of a car-

tesian spatial description of the states and the integration was over the positive quad-
rant. The magnitude of an energy state, ={i,m,n), is proportional to the square of its
position vector (22 + m? + n2). Thus states of the same energy are connected by spherical
surfaces within the positive quadrant (f,m,n >0)}. The level index, q, is proportional to
the magnitude of the energy. And the number of states per level is proportional to the
area of the spherical segment. Thus g2 = 22 + m2 + n? provides a direct analogy between
the two representations. Derive an analytic expression for the degeneracy, grr(q), using
this analogy by transforming the cartesian states integral to a spherical level integral.

The triple integral over the states developed in Exmp. 4 is to be transformed under the

definition &2 + m? 4 n2? = q%. Thus the element of volume in the cartesion space trans-

forms to df dm dn ==q2cose df d¢ dq. And while 1 £ n,m,2 <« rthe new coordinates satisfy
the limits: 0 < 8 < n/2, 0 < ¢ < /2, V3 < q<=. Thus

2 2 2
-7 /T -m"8_ /T w  -0Tg /T
Z =( e tr d.Q.) U:e tr dm) (f e tr dn)
tr 1

H— 8

1
2 2 )
/2 /2 2 -g78 /T e -q°8 /T
2 Li 2
= f cosBb dé f dé f e tr q dq = 7 f q e tr dgq
0 0 V3 /3

2
Comparing this result to eqn. ILI1IC-l4c, we conclude, gtr(q) = wq /2.

Exercise Al. Exmp. Al formulated Z, . for the limit T >> 9.y, in terms of an integral over
the levels. Verify that this result is correct by completing the required integral (use

Table IIIE-1) and comparing the result to that of Exmp. 4.

Exmp. 4 and Exer. Al formulated the high-temperature limit translational partition
function in two of its three possible integral forms, viz., as an integral over the states
and levels, The third formulation is as an integral over the energy magnitudes themselves

Exercise A2, Transform the level integral formulation of Exmp. ! to an integral over the
energy. Identify the degeneracy, gtr(g),

Exer. A2 expressed gtr(E) in terms of etr' In Unit IIID, we will employ this function to

;“3 determine the equilibrium properties of electromagnetic and acoustical radiation, and
L

29
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30 MICROSCOPTC CALCULATION OF PERFECT GAS PROPERTIES:,

free electrons. Therefore, we set out the result in terms of the particle’s parameters.

1/2 (o372 1/2
g (=) = L 4nv\ a ) £ (ITIC-AL)
tr 4 3/2
(e 8 )

This unit is devoted to the derermination of the properties of indistinguishable par-
ticles in their Boltzmann limit. Therefore, it would be imprudent to apply these methods
without testing to see that the limit, nj << gj, is satisfied,

Exercise A3. Show that the states of the first (or ground) level have the highest occu-
pancy.

Exer. A3 shews that it is not necessary te investigate the entire level index series,

since n,/g = nlfgl. A further simplification can be achieved when we recognize that

the valuesji?agtr (see Sect. IITA) are many orders of magnitude smaller than the value of
any individual characteristic temperature of an internal mode, Gp > str(see Sects. IIIB,
C, and D). Therefore, the translational mode is excited at far lower temperatures than
any of theinternal modes. In the following example we exploit this fact to reduce the in-
distinguishable limit test to a function of the translational mode alone,

Example A2. Under the assumption that the translational mode is fully excited, T >> §

»
study the effect of the internal modes on the prediction of n /gl tx

We can write for the separate translational and internal modes: 81 T &, lgln 1» €1 =

€ + € » and 2 = Z__Z . ., Then assuming that the limit is satisfied’we ciO write
tr, 1 n,l tr in
n -gl/kT /,-etr,l/kf) ( -Ein,I/kT)
1 N e a e
— = z =N
gl k tr in

Consider an expansion of the reciprocal of the internal mode rerm.

zin -elfkT —EZ/kT -EB/kT El/kT
e 7Tl (él e +te,e tgye + -+) ] in

-

in,l
® ~(e,m2 ) /KT ~(eyme ) /T
= +
g, g, e + gy @
Then when we recognize that the internal mode is, at least, much less excited than trans-
. E]_/kT ~
lational mode, we expect (Z e )in gin,l' Thus
- /KT
1
2; - ™ P N e e,
81 gtr,l gm,l Ztr gin,l
Finally, the translational mode is assumed to be fully excited; so T s> 8pp = (Etr l/3k).
Thus the limit test simplifies to '
n
tr,1 ZN < 1
gtr,l tr

(
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LepCNDIX A

samp. A2 reduced the limit test to a function of translational mode parameters alone,
:/Ztr << 1. When we use the expression for Ztr

;(2ﬁm*kT)3/2

z = LN N

tr hZ

and its consequent equation of state (see Exmp. 5) pv = RT or p = ndT where n, is the

particle aumber density (nv = N/V = NA/;), we obtain

2 3/2 2N\3/2 ,
= N =n h =—L~—-}-l-—-- << 1
Z v * 5/2 *
tr rm kT (kT) Tm

max

(11IC-AZ)

L

APPENDIX IIIC-B

IONIZATION, DISSOCIATION, AND CHEMICAL ENERGY

The development in the unit was restricted to the consideration of pure substances in
which the subject molecule (or atom) remained unaltered. 1In cur brief comsideration of

the electronic mode (based on the one electron hydrogen atom}, we concluded that this mode

is not excited at ordinary temperatures, T << Bel Thus it normally contributes little

more than a constant to the properties of a molecular gas. It was on this basis that we

ignored the electronic mode within the body of the unit.

I. IONIZATIOR

When the temperature of a gas composed of hydrogen atoms is increased toward eel w’
*

the electron of many of the atoms is excited to higher energy levels {(or to larger Bohr

Ans. Al. The result of Exmp. Al can be written as the difference of two integrals. The
second is negligible in the limit T >> Btr and the first is available from Table I[IIE-1,.
2 2 x
; - 1({; 2.0 3, /T « _r’? 2. a“s, /T dq) _ Lé‘}('f )3] _ l("T )3/2
er 2 o 2 4 etr 8 Otr )
. . - 2 - - -
Ans, A2. The energy is defined as € = ketrq . Thus €min 3 ketr, Cax == de =
2ketrqdq' Thus
2
n ? 2 4 Gtr/T w £ -e/kT de
Per T2 0 o=y | w_ ¢ T3
%
. 3 jketr Er 2(1(8t €)
Y % ~e/kT ] g
it ] e e g o - Z[__‘—;J
(e_)7"" kb (x5 )
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orbits)., As the temperature increases toward Bel fr Some atoms begin to lose their alec-
3
tron. The gas is Zonized and beccmes a plasma.?!
The energy level series of a multielectron atom is as yet too difficult for analyeic

determination. However, for most atoms the values of 8a1 2 and e for at least the
¥

el
first several levels have heen measured spectroscopically (see the jiNAF Tables). Like
the hydrogen atom, at low temperatures the electrons of these atoms are unexcited; they
occupy the lowest accessible states.?2 ag the temperature level is increased some of the
electrons are excited to higher levels. At still higher temperatures, scme of the atoms
would lose a single electron; they are then singly tonized. Upon further increases in
temperature the atoms would successively lose a second and more electrons, and become
doubly, triply, etc., ionized. For the hydrogen atom the ionization temperature is the

8

coefficient of the entire electronic level series, For multielectron atoms

5 = .
el,H I,H
no single ceonstant is sufficient to describe the entire series. However, we can indicare

the relative magnitude of this mode using a characteristic temperature defined from the

energy for the first ionization state, 6 fk. The values for a few atoms are

= A
S U]
listed in Table IIIC-Bl. Notice that the ionization temperatures of the multielectron
. . 5
atoms listed are of the same order as that determined for the hydrogen atom, eIw‘10 K.
The table does not list ionization temperatures for molecules, as most molecules tend to

dissociate before they are appreciably ionized.

II. DISSGCIATION

A molecule is formed when a covalent or ionic force acts among the positively charged
nuclei and negatively charged electrons of the participating atoms. That is, molecular
bonds are formed by electronic interactions. A schematic representation of the First few
energy levels of a representative diatomic molecule is shown in Fig. TIIC-Bl. The figure

also shows a few of the vibrational levels above each electronic minimum and a few much

21The plasma state is relatively uncommon on earth. (It is present within a fluor-
escent tube, an electric arc,and a fusion reactor.) Nevertheless, the plasma state is the
preponderant ceondition of matter in the universe, as most of the matter is concentrated

in the stars.
22Free electrons are Fermions, thus at low temperature they Fill up the states start-
ing with the lowest level.

Ans. AJ. The only parameter that depends on j in the series nj/g- is the magnitude of the
energy of the successive levels, c¢:. Their order is defined to be scquentially increas-
ing. Thus the first exponential in the series is the largest.

. n -el/kT
M =L _Ne
- - Z
gj,max gl '

(
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TABLE IITC-Bl. TONIZATION AND

DISSOCIATION TEMPERATURES
o |, r
IONIZATION TEMPERATLRES DISSOCIATION TEMPERATURES -
Syabel G (k) . symsel  3,(%) £ hird Level
Ha 2.855 - 10% Hy 5.20 - 104
Ye 2.500 - 10° M, 4.18 - 10*
4
A 1.430 - 10° 0, 5.90 - 10 Second Level
W 1.579 - 10° c1, .87 + 10”
¥ 1.690 - 10° cH 4.03 »10%
5 4
o 1.582 + 10 0 12.9 - 10
5 4 L First Eiectronic
c1 1.512 - 10 HC1 5.15 « 16
5 4 r Levet
c 1.308 « 10 ¥o 7.51+ 10 Eq
5 1,203 - 107 o4 5.1 - 10°
Ma o 0.59 - 10° Fig. ITIC-Bl. Electronic Levels of

a Diatomic Molecule (Schematie)

smaller rotational levels above each vibrational level. If the temperature is increased
sufficiently, electrons will be excited to higher electronic levels. But like the atom,
molecular electron excitation is not appreciable unless the temperature is raised to a
very high level, At sufficiently high temperatures the molecule will dissociate. For the
digtomic molecule represented in Fig. IIIC-B1, the disscciation level is represented by

the depth of the potential well corresponding to the lowest electronic level, = Values

q°
of the dissociation energy for several atoms are reported in units of temperature in
Table TIIIC-BI, Bd = Ed/k. Notice that molecular dissociation temperatures are about one

order smaller than atomic ionization teémperatures. After the molecules have dissociated,
further increases in temperature cause the atoms ro ionize.

We are now equipped to discuss chemical reacticns. When atoms (or molecules) are
combined to produce new molecular species the principal energy change results from the
dissociation energy. To study this change, we must first formulate the electronic parti-
tion function for the molecule. For purposes of discussion, we arbitrarily choose the
unionized atoms in their lowest electronic energy level as the zero level of electronic
energy. Then the electronic partition function of the molecule can he writcten in the
standard infinite series formulation. However at normal temperatures this partition func-
tion can be evaluated using low temperature limit, T << Hd, as consisting of its firsc
cerm

Z1|Te<t e IIIC-B1)
D

The partitien function allows us to formulate the electronic contribution to molecular

=] g e = g
=1 el,2 el, 1l

properties (based on an atomic reference level),

Exercise Bl. Formulate an expression for the eénergy, entropy, and specific heat of the

electronic mode of a gas in the low temperature limit. (Answer on Pg. 34.)

Exer. Bl shows that the electronic contribution to the energy of a gas is a constant

proportional to the dissociation temperature,
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_* ,  {
= — 6 -
uel!T<<8d R 4 (IIIC-B2)

With this result we are able to determine the net eénergy change when a molecule is formed
from its constituent atoms. For reference purposes these formation reaqctions are normally
considered to occur at fixed temperature and pressure. Under these conditions the heat of

the reaction is called the enthalpy of Fformation, Aﬂf.

Example 31, Determine the change in enthalpy when oxygen is formed from its constituent
atoms at 298 K and atmospheric pressure.

The defining reaction is 20 =0,. Under these conditions both atomic and molecular oxygen
are perfect gases. Thus the en%halpy change is

AR_(T ) = ¥ (T 2R (T )
£Y 70" 02( o) - O( 0
To determine the value we must use an absolute or a common reference base. We have chosen

the atom in its lowest electronic level as a basis for our calculations,.?3 Thys using the
formulae of Table IITIC-1 and the data of Tables IIIC-2 and Bl, we find

T* -3/} 1 1 - .
hoz(zga K) = & {2 T + ev_[Z + NG )J - ed} = 8.314 J/(g mol K) {(2J 298 K

e -1
.
+ 3392 kL4 L - 5.90 » 10%kbe L7370 10°3/ (g mol)
2 (3392 K/298 K) _ ) o\
- - 7
ho(298 k) = % RT= @) " 8.314 J/(gmolK) - 298 K = 6196 J/(g mol) {

Thus .

85,(298 K) = ~4.588 - 10° - 2 - 6196 = -4.861 - 10°1/(g mol)

Exmp. Bl affirms our expectation that the major portiom of chemical ehergy results from
the formation and or destruction of molecular bonds. Though we have only considered the
formation reaction of a homonuclear diatomic molecule, the formation of compound molecules
from unlike elements or new compounds from molecular reactants are simply extensions of
the same techniques. Combustion pProcesses are considered in Units VIB and C, The calcu-
lations for combustion analysis depend upon absolute property data developed by the meth-

ods of this unit.

23The JANAF Tables use the elements in their natural state as the reference basis.
Thus the enthalpy of formation of 05 is defined as zero; but atomic oxygen has an enthalpy
of reaction of opposite sign and half the value of the resulr obtained here.

9
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TABLE IITC-1:

CHARACTERISTICS OF GASEOUS MODES
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i TABLE IIIC-2: ROTATIONAL AND VIBRATIONAL TEMPERATURES
‘ N Subtance Syabol  ©_(K} g 6K Substance Syabol U (K) o 8K
- ; el — a
e = T \‘\ Weaonuclear Diatomie Nonsymmetric Linear Polyltmi:b
Nicrogen . ll2 2.87% 2 3392 Hydrogen Cyanide HCN 2.137 1 1024 (2)
ktiv 4]
Oxygen o, 2.079 2 2274 4110
Hydzogen #y 87.53 2 8338 Potassium Cyanide KON  0.1570 1 297.8(2)
thlorine c1, 0.31465 2 807.3 ";‘{3;2
Fluerine Fz 1.2886 2 1328 847
o, 1 47 .8(2
Browine 3, a.1164 2 225.1 Nitragen Monoxide N20 605% 1335.; ]
=] 3199.5
Hetronuclear Diatomfic
b
Pal
Carbon Monbxide co 2717 1 321 Nonlinear Palyatemic
i Nitrie Oxida NQ 2.452 1 739 Vater 1,0 0.1246 2 2294
5262
Hydragen Chloride HEL 15.23 1 4102 5404
Hydrogen Fluoride HF 10.15 1 5954 nia W 0.1273 3 1470
Methylidyne cH 26.80 1 117 3 2332
Sodium Chloride ¥acl 0,312 1 523.2 51472}
Symmetric Linear ?olyatunicb Mechane cH, 0.47580 12 12;353)
2 2}
Carbon Dioxide co, 0.561 2 960.1(2) 4196
1932 4343(3)
1380 Carbon Tecrachloride CC].“ a.01784 12 KRNI rs]
Methylene CH, 11.34 2 1682(2} :;:-3(3) -
3870 M
4604 1142(1)
Carbon Disulfide CS2 0.1568 2 570.%(2)
946.8
208
Acetylene CEHZ‘ 1.691 2 B820.0(2)
1049(2)
2840
4722
4854

3

Dats extracted from JANAF Thermochemical Tables, Second Ed,

Issued, June {1971).

Daca reported as a wave mumber. The characteristic temperatures are detertined as E!l. = (he/k) * B, and
Bv = (he/k) W (Anhagsonic correction parameters ars omibted.)

b?olyatmtc vibrationsl data in Teported as a wave number. Thus G, P " {halk) +
data given as gither a Yave number Gy = (he/k) ¢ B, or individual or product moments
or 8, = [b/(Bx )] » 11/3,

w,. Polyacomic rotatiopal
of ilnertia, @, = [h/{8r<k}} » 11

‘”_h



