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UNIT IIIB

ENTROPY, EQUILIBRIUM DISTRIBUTIONS, AND
THE SECOND LAW OF THERMODYNAMICS

The concept of equilibrium provides a basis for the definition of a new property, entropy.
The second law of thermodynamics is formulated in terms of entropy. The distribution of
the most probable {an equilibrium) macrostate is developed without recourse to trial and
error. This development leads to a relationship among macroscopic properties, the Gibbs
equation, which is a foundation of the analysis of property changes. It is found that
three terms contribute to the entropy change of a system. One is a reversible heat effect.
The other two are the thermal and mechanical sources of irreversible entropy generation.
In the light of these contributions a general thermodynamic design principlé is advanced.
The optimum design to accomplish a given objective is the one that minimizes the increase

of the entropy of the universe.

Objectives
The objectives of this unit are divided into two categories. The objectives of Sec-
tions T and IV pertain to entropy, its macroscopic application and the second law. These

objectives are required of all students.

1. State and use the definition of entropy in terms of W.

2. State and draw couclusions from the second law principle as applied to the uni-
verse,

3. Write the Gibbs equation for a specified simple or complex media.

4. Describe conditions that cause mechanical and thermal irreversible entropy pro-
duction.

5. Evaluate the magnitude of the reversible, and irreversible thermal or mechanical
contributions to entropy change.

6. Write and draw conclusions from the Clausius inequality.

7. For given conditions, if possible, specify the direction of change of the entropy
of a system.

The objectives of Sectiens II and III of the unit are required only of students who
intend to continue in Units III. These objectives are:

8. Write, and discuss the meaning of, the equilibrium distribution function for

Maxwell-Boltzmann, Bose-Einstein,and Fermi-Dirac statistics.

9. Find the appropriate expression for the equilibrium entropy of Boltzons, Bosons
and Fermions.

10. Apply the equilibrium distribution for Boltzons to the calculation of entropy.

11. Distinguish between reversible work and heat or irreversible work on a micro-
scopic basis.
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UNIT IIIB

ENTROPY, EQUILIBRIUM DISTRIBUTIONS, AND
THE SECOND LAW OF THERMODYNAMICS

Unit IIIA initiated our study of macroscopic systems from the viewpoint that the behavior
of real systems results from the collective microscopic behaviors of the particles of the
system. By studying successively larger systems we surmised that real systems have unim-
aginably enormous numbers of microstates and enormous numbers of macrostates. With no
reason to expect the (isolated) system to prefer any specific microstate, it was assumed
that all microstates of an isclated system are equally probable. With this single assump-
tion, it was shown that a relatively small percentage of the macrostates possesses a vast
majority of the system's microstates, that the properties of the macrostates in this group
are virtually identical, and that whenever a system is in a macrostate not belonging to

this group, collisions drive the system overwhelmingly toward distributions {and conse—
This characteristic
1

quent properties) of these probable, equilibrium group macrostates.

behavior of isolated systems of particles is the Second Law of Thermodynamics. To ex-

press these concepts quantitatively this unit defines the property, sntrooy, and uses it
to formulate the second law. This formulation is used to develop tools for the caleula-

tion of macroscopic properties in terms of entropy and to evolve statements of the second

law for nonisclated systems.

1. ENTROPY DEFINED

The microscopic property that determines if a macrostate (i) is a member of the equi-

librium group is the relative magnitude of its number of microstates, Wi. Therefore, Wi
is a property that can be used to describe the approach to equilibrium, wi—*weq’ where eq
represents equilibrium or a member of the most probable group. Since Wi is propertional

to the number of particles in the system 1t is an extensive property. We also know that

wi is proportional to the probability of macrostate i. The probability of occurrence of

two independent events is the product of probability of each. Seo if the particles of a

system were partitioned into parts A and B, then W, would equal W, .*W, ., where W, . and
. i A,i B,1 A, 1
WB i are the number of microstates in macrostate space for portions A and B. This multi-
*

plicative nature of Wi is inconvenient; no other extensive property we have encountered

behaves this way (other extensive properties are additive). To eliminate this difficulty

we define a new property that increases as wi increases (i.e., when the isclated system ap-

IThe second law can be stated as "all microstates of an isolated system are equally
probable” since this is the single assumption of the statistical approach.

1



2 ENTRCPY, EQUILIBRIUM DISTRIBUTLONS, AND THE SECOND LAW OF THERMODYNAMICS

preaches equilibrium), yet is additive over the subdivisions of a system. This property,

called entropy (S) is defined for any macrostate (i) as?

5. =k &n W, ' {IIIB-1)
1 1

where k is the Boltzmann constant defined in Unit 14.3 Thus, as a system approaches equi-
librium, Wi + Weq, and the entropy of the system increases monotonically, Si - Seq. Fur-

thermore, if two systems are combined,

)=k ftnW, . +kinW =35

=k & =k & L+ ,
S, =kiaW =kin (W AL B.i At 5Bt

i ai VB,

Entropy like all other properties has am ensemble average value, as defined by eqn. IIIA-11

1* I*
§ = .E .S, = _{ p;k in W, (111B-2)
i=1 i=1

Using the perception developed in Unit IIIA, for real systems

§ —+8§=kinW
. a

eq q

In Unit EITA, we used trial-and-error procedures to determine the distributions,
nj,i' (wi is analytically determinable once the nj,i are known.) The recognition that
trial-and-error techniques are operationally impossible for real systems mskes the devel-
opment of the concept of equilibrium an extremely significant result of Unit ITIA. Since
equilibrium macrostates have properties that are indistinguishable from the ensemble aver=
age, we need only determine the properties of this group to obtain average system proper—
ties. Furthermore, the properties of any member of this group are virtually the same so
we can choose the one most amenable to analysis. This is the most pPOBable maerostate
characterized by me. Tets distribution and properties can be determined without trial and

error using analytical procedures developed below. With this choice the equilibrium con-

dition in terms of the property, entropy, is

§=8§ =28 =k1iinW (IIIB-3)
eq mp mp

This is Boltzmann's equation.

With the knowledge that entropy of an isolated system is maximized in equilibrium,

we can write the Second Law of Thermedynamics as

ds (ITIB-4)

. 2
isol
If the system was in equilivrium when isolated the equality holds, otherwise the entropy

of the system imcreases until equilibrium is attained.

’reference 1, pg. 147, establishes this form with an argument of functional analysis.

3The rationale for the introduction of Boltzmann's conscant is explained later.
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ENTROPY DEFINED 3

Example 1. Table IIIA-8 summarized the results of the 30-particle example. Use this
table to determine the entropy of the most, 10th most, 20th most,and least probable macro-
states. Also determine the relative change in entrupy as the system goes from the 10th,
20th, and least probable macrostates to the most probable.

Ftom Table T1TA-7 we find W = 2.648 » 1023 and that p,, = 0.0639; pig = 0.0271, pyg = 0.0163
mp 20

Pep = 1.13 - 10722, This allows us to determine wi for each of these macrostates.

me=pmpw=l.69'1028, Wip=0.718 - 1028,  W,,=0.429 - 1028, w2p=0.299-103.

The entropies are

5

k o W = 1.38+10"23 J/K+2n (1.69 + 1028) =8.97 - 10722 J/K
mp mp

8.85 - 10722 J/K, Sp,=8.78- 10722 J/K, Sgp=2-37" 10722 /K

S10

The percent changes between these and the most probable macrostate are

S  -=51p - .10722 Sap ~ 520 Spp =3
mp = (897 8.85) 10 = l.,ASZ, _mp = 2_12%, ;EEL—RR = 73.6%

N 22
Smp 8.97 ° 10 op mp

This illustration reaffirms our hypothesis; the changes in entropy among the probable
macrostates are small. But the change from the least to the most significant macrostate

is quite pronounced.

Exercise 1. Examine the definition of the entropy, eqn. IIIB-l, and determine the lowest
possible value of entropy. Using the perspective of this answer, reflect on the idea of
increasing entropy being synonymous with increasing disorder. How ordered is the state
that corresponds to the lowest possible entropy?

sol 2 0 (eqn. IIIB-4) appears limited since

it applies oaly to isolated systems (closed systems without work or heat interactiom).

The formulation of the second law as dSi

However, the equation can be immediately generalized by recognizing that the universe is
an isolated system.“ For application we divide the universe into a system (the subject

of attention) and its surroundings. Thus

“The specification of the entire universe (as opposed to immediate surroundings) as
an isolated system has interesting philosophical implications. From this perspective, all
processes tend to maximize the entropy of the universe, i.e., to drive it toward equilib-~
rium. Any approach to equilibrium in turn, decreases the driving potential that causes
the process to occur. The driving potential for our planer is the energy of the sun which
sustains all life, either directly or indirectly. However, the sun is contiaually ap-
proaching equilibrium with the other bodies in the solar system; it is burning out. There-
fore, the sun's energy is being distributed uniformly within the solar system. Similarly,
a universe, considered as an isolated system, is eventually destined to an "entropy death"
(though the time required for this to happen is virtually beyond our conception).

One can relate our concepts of these processes te a perspective of a supreme being
through a number of questions. How was the universe arranged in its original nonequilib-
rium condition? 1s the universe isolated, such that it obeys egen. IIIB-47 Or is there
an interaction with something outside the universe, which could periodically or contin-
uously restore the universe to, or toward, its original low-entropy nonequilibrium cen-
dition?
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= + = + -
univ dssys dSsurr z 0 Asuniv ASsys &Ssurr 20 (IT18-5)

Eqn. IITB-5 is so far only symbolic gince wi, and hence Si and 5, are to this point
calculable only by trial and error. Im Section IT below, we develop the ecuilibrium dis-
tribution on an analytic, closed form basis that allows the macroscopic equilibrium ther-
modynamic properties, including entropy, to be determined frommicroscopic models. This
procedure is used in application in Units ITIC, D, and E. And in Sectioen T1I the equi-
librium distribution provides the basis for the relation of entropy to other macroscopic

properties.

Note to the Student. The following is a rationmale of the objectives for this wunit.

1. The material of Sections I and IV is tmportant to all students for both conceptual and

practical applications of the second law. Therefore, all students will be examined on 1ts
form, meaning, and application (Ubjectives 1-7).

2. Students who do mot proceed to additional Units ITI will not be examined on Sections
IT and ITI. However, since Sections IT and IJT develop the macroscopic relations of
Section IV, at least a cursory reading of these sections is recormended.

3. The development in Sections IT and IIT is the foundation for the rema
IIT.  Studemts who continue in this sequence will be examined om the objize
portion (Objectives § to 11), <n addition to those of Sections I and IV.

IT. EQUILIBRIUM DISTRIBUTION FUNCTIONS

The equilibrium properties of a real system are those of its equilibrium group macro-
states. One of the equilibrium macrosrates is the most probable. If we can find its dis-
tribution and its properties we will have found thase of the system in equilibrium. 1t is
advantageous to consider the most probable macrostate because its entropv is the greatest
and therefore its distribution can be determined by means of the extremum principle. Spe-
cifically we wish to fird the distribution, nj i’ whose entropy is a maximum subject to

3
the constraints imposed on the system by its energy, U, volume, V, and number of articles,

%.% This problem is expressed in the mathematical form

dS = kd [¢n W.(n, .3} =0 (IIIB-4a)

1 Js1

’ b 7

= ! = 3] = H = )] = . IB-~ > !
dN d,\z ne oy § én, . =0; du d[§ LILY (v,} Eej(v)énj’l (IIIB-6b,c)

3 ]

5Reg_all that the development of Unit TIIA was, implicitly, for a simple compressible
system, = V. The set (U,V,N) is an extensive set of 3 variables consisteat with the
State Postulate, Unit IB.

EThe derivative of n; 4§ is written as dnj i instead of dnj i1 as a reminder that njoj
r

is a discrete variable (i.e., nj i° 0, 1, %2, ...).
Jie

"The derivative of ©,(V) is zero since the volume is fixed.
]
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EQUILIBRIUM DISTRIBUTION FUNCTIONS 5

The solution of the equation with constraints is n_’mp. Unit IIIA presented expressions
for wi for the independent particle systems for the three statistics. However, before
substitution of Wi explicitly we can perform some operations symbelically.

There are two procedur.s to solve the extremum problem prescribed by eqns. ITIB-6.°
These are the method of Lagrange Multipliers and the method of Steepest Descent. We will
use the method of Lagrange Multipliers. To use this method we multiply eqns. ITIB-6b and
¢ by unknown parameters o and B, respectively, then subtract them from eqn. I118-%a.?

(—-aN BU) =d[2n W(n, )[-a § én, . -8B ] €, (V)én, , =0 (II1B-7)
R P! i i.1 i ] 1,1
Eqn. IIIB-7 can be solved to obtain the most probable distribution as a function of the
unknown multipliers, nj,mp(a’S)' Then the sclution can be completed by idenfifying the
physical meaning of o and B by further consideration of the physical conditions on U, N,
and S. To proceed we need an explicit expression for Wi' These expressions were pre-

sented in Unit IITA for the three statistics. We will first treat Boltzons.

Yote to the Student. The results developed below ave important though alseb“a;cauld ted-

tous. The logic for some of the adebrazc steps and approximations lies in lnowing the
forms of results destrea Do not let the algebratc detail obscure its intent or results
S*udy or reproduce the apgeora (mogt of which is presented 1n +ne appendices) oniy so far
as you personally require to belifeve and understand the resul

A. The Distribution Function for Boltzons

In Unit IIIA the number of microstates (W ) of a macrostate (i) ofzaﬂaxwell Boltzmann
system was shown to be calculable using eqn. IIIA-?a, Wi =N! {I(g 3,1 )/(n !).

The derivative of in w?m is derived in Appendix ITIIB-A. The result is

g,
d(n W\;B) =] in (—1—) LI

Substituting this into eqn. IIIB-7 we obtain

g.
E @“ (_“LJ - a-Ba.(Vﬂ dn, . =0
n 1 J,l.

] 3»i

8The term extremum refers to maximum and minimum, as does the condition dS5 = (). The
second derivarive of § will show that our results pertain to the maximum.

gLagrange'g. method is explained in Ref. 3, Appendix A.

Ans. 1. No occupled macrostate can have less than one microstate, Wi > 1. Since tnl=0,
the lowest possible entropy is zero, Smin = 0. Such a state would be completely certain,
i.e., totally ordered. This answer supports the disorder analogy.
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Since the n, ; are linearly independent, the satisfaction of eqn. ITIIB-7 requires that
£

the bracketed term be zero for each j.lg Thus, the macrostate that satisfies eqns. ITIB-4,
the most probable (i = mp), is determined.
MB

a —
j,mp a+85j(v)
e

g,

in {E—l— = o + 8e (V) n (ITIB-8)
i,m 3

This result is not yet useful since « and 8 are unknown. For Maxwell-Boltzmann statistics

o can be readily determined as a function of N, B, g, and e.(V). Substitution of the ex-

pression for an into eqn. IIIB-6b 1 =(Zn_ .) yieldsll
J,mp P R

’ N
a = in (qu-) or e ¢ =

The function Z is called the partition fimetion.

™=

-Be . (V)
Z(V,8) = z gj e 3
3

The partition function is a sum that appears frequently in calculations of thermedynamic
properties. Its definition saves congiderable writing.

To determine B we first write entropy as a functiom of B,U, the partition function,
Z(8,V), and N. For a Maxwell-Boltzmann system the expression for entropy of a macrostate
{as shown in Appendix IIIB-4A) is

. 8 '
S -k i WP = k(|70 an ()| + N2nN (ITIB-A3)
i i 3 j.1i nMB

L)
To find the equilibrium entropy we substitute the equilibrium distribution into the above

equation as follows

-Be, (V)
MB vg, e 3 [P
n', [PRNENR KRNI and in ___l,) =3en Z - &n N + 3e.(V)
J,mp A B ]

jsmp

MB -y L[ n, .(n Z-2n N+as,)] + N 4n M
eq S b i

k(ﬂnz):n. - NJn, . +8}n,
j.]ri ijl jJal

Therefore

[#53
1

L}

g, + N £n @
]

10This statement is an oversimplification as there 1s some interdependence through
the constraints.. A more rigorous treatment yields the same conclusions.

+

-BEj(V)

Te, -
MB_31-
liThe steps are N = z n,oy = 3
i e
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But since E n, ;= N and z n, iEj = U.the equilibrium entropy can be written as
i i
MB
Seq (8,U,N,V) = k8U + Nk in {Z2(8,V)] {I1I3~-9)

Now we turn our attention to the task of relating

00t il Lt s, okt kit e a8

the remaining unkuown multiplier, B, to a macroscopic

e

property. This is accomplished by considering the
process of thermal equilibration of an isolated sys-

. tem. The second law for such a process is dsisol'fo'

Consider a system composed of Boltzons and subdivided

[ PSS

into regions A and B, Fig. IIIB-1l. The wall that Fig. TI13-1 Thermal Equilibration

g separates A from B is rigid and impermeable {there in an Isolated System
; is no work or particle transfer; NA’ NB’ VA and VB are fixed). The wall allows energy
; transport as heat. Thus if the two regions are not initially in thermal equilibrium, a

heat interaction, dQA = —dQB, will occur until equilibrium is achieved. As a result of
this process the energy of each region will change subject to the isolation condition
(viz.,, dU = dUA + dUB =0 or dUA = -dUB). We wish to study the effect of this process on
the system entropy. This can be_.done by determining the entropy change of regions A and
B, since § = SA + SB' The determination of dSA and dSB ig facilitated if we specialize
our system so that each separate region remains in an extensive quilibrium state. Since
our intent is the study of the effect of an equilibration process on the overall system,
this limitation does not defeat our purpose. With this restriction, eqn. TI1B-9 is appli-
cable; it allows us to relate the entropy change of each region to the' equilibration caus-

ing energy transport. The coefficient that relates these parameters is the partial deriv-

ative of the entropy with respect to the energy.12
: a8 a5
: A B
. R = [ — a
" dSA (BUA) dUA and dSB (SUB) UB
* VarNa Vg-lg

This coefficient is developed for Boltzons in the following example.

Example 2. Use eqn. LIIB-9 for Boltzoms to derive the expression (BS/Z)U)N v e kB.

e v

The equilibrium entropy of a Boltzon system is 522==k8U(B,V,N)-+Nk tn [2(B,V)]. Therefore

;BSMB

e

Ry

. __=2q -

l2pnit S2 presents the defimition of a partial derivative and illustrates example
determinations.
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s
CJBS = k3 + kU@’—ﬁ) + Nk 'éa's" [4n Z(B,v)]v(—%%)
N,V V,N V,N

The last term is simplified as

-Be, (V) -Be. (V)
£ =1 jazy 1 5o j il j
3g A0 Z(B.Wy = 3 (as} z .8 3 (e )v S
v ] i
Multipl i anr Ml
t. . N al 2 = e—
ultiplying by N/N and introducing nj,mp > gje » gives
2 Sy e sl
38 [2n Z(B,V)]v e § nj,mp sj(V) =
So we have
o B .
(2] =+ (28] _mI[28) o, QED.
\ 9U NV U VN N | 3U VN

The preceding example established that the entropy changes of regions A and B are
given as, dS, = kB,dU, and dSg = kBgdUp. A first law analysis of these regions shows
= 4+ = - = [ .
(dUA &QA iﬁi) (dUB dQB +,§£;J Thus the entropy change of the system can be
written

dS!isol = dSA i3 dSB = deA(SA—BB) =0

Examine the dimensions of this relationship. Both entropy and heat are extensive. There-
fore, B must be g2 fundamentally intensive property. As equilibrium is achieved, the en-
tropy reaches a maximum (dS,

isol
property that is uniform when a system is in thermal equilibrium. This is the same char-

=0) and*B, = RB. =B . B.ds a fundamentally intensive
A B eq

acteristic that is displayed by temperature. We conclude that 8 = B(T). To determine the
form of the relationship consider the expression developed above for the isolated system,

ds If heat enters system A, dQA > 0, then the second law, ds!isol > 0, requires that

isol”
E\ > BB' So heat flows from regions of low B toward regions of high 8. This is opposite
s

to the relationship of heat flow and temperature. The relationship between 8 and T is
reciprocal, 8 o 1/T. We choose as our explicit relationship the simplest form that satis—
fies our objectives

L
KT

B8 (ILIB-10)

Boltzmann's constant, k, is required to ensure the same numerical values for temperature
as our previous scales (Unit IA).
The equilibrium distribution for Boltzons can now be written in terms of measurable

parameters.
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-g (V) /kT .
w Nse mz (V) /kT
n = ——J——ZW where 2(T,V) = { g e (IIIB-11,12)

]

In eqn. IIIB-11, and in the rest of the unit, the subscript, mp, 1is omitted. It is im—
plied in the expression for the distribution functiom. Sirilarly, we will emit the sub-
script, eq, in the expression for entropy.

B - % + Nk in Z{(T,V) {II1B-13)

The use of the distribution function can be illustrated by example. Although most
physical systems have an infinite number of states and levels {e.g., the particle in abox,
Table ITTA-1), it is simpler to consider a system with only a few levels. A physical ex-
ample that serves this purpose is a laser. The lasing states are a few levels in an in-
finite array of available excitation levels, one of which has a long time constant far
decay to equilibrium relative to the others. For processes performed in times small in
comparison to the decay time, this metastable state and the ground state <an be consid-
ered isolated.

Example 3. The operation of a ruby laser can be analyzed as an isolated system of elec-
trons existing in two levels— the ground level, 4, , and the mecastable level, 2p. Oper-

ating at liquid nitrogen temperatures, 77 X, a particular rtuby erystal has the following
characteristies:!?

=0, = .40 - 1027, e, = 2.88- 10720 J/particle, g, = 3.20- 1021

51
The total number of electrons trapped in this isolated subsystem is 1018,

fa) Determine the number of electrons in each level of the subsystem when it is in equi-
1ibrium with the rest of the crystal (77 K). Determine the total energy of the subsystem
under these conditions. (b) A power source 1is used to add emergy to the lasing system
(i.e., to pump it) until the number of electrons in the upper level is np = 5.00 - 10'°
Find the amount of energy added.

(a) We first compute the partition function.
-e . /kT -c, /KT e,/ kT
3 1 2

3]
]

~2.88 - 10720 j/part )
1.38 « 107233/ (part X) - 77 K

]

6.40 » 1022 + 3.20 - 102! - exp [

13

6.40 « 1022 + 3.20 - 10%leexp (-27.1) = 6.40 - 1022

13The energy change, Ac = €3 — €1, is correct for the lasing states of a ruby crystal.
But £, 8 and g, were selected arbitrarily for simplicity.
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-EZ/kT
Ng,e 18. . 1n21 . -
Thus, n2 = 2 Z = 10 3.2+ 10 exp {(~27.1) = 8.5 10" particles
6.4« 102
u, = N-n, = 1018 particles U = ney +onge, = 108 - 0 + 8.50 - 10" parc - 2.88 - 10-20

J/part = 2.45-10"1% 7,

It

1 N-—n2==95.0 - 108, We solve for the new
—EZ/kT

n g,e g

2.~z T2,

1 -El/kT 8y

{b) After pumping, n, = 5,00 - 1018, and n
temperature from

—(ez—el)/kT

Or,
-2.88 - 10720 J/part

(e,~€.)
T= Ta.\ 16 22
x En(-nlr%) 1.38 - 10723 J/part'ﬂ.n(z - 10 7-6.4-10 )
ni'8 5+ 10L6 3.2+ 1021

= —4,07 - 10% X

A negative temperature? Yes, systems with a limited number of allowed (bounded) states
can and do achieve negative temperatures. The positive temperatures of our experience are
defined on the basis of equilibrium distributions. As seen from the expression for T
above, the nonequilibrium condition necessary for laser operation, {(nz/gz) > (nj/g1), is
responsible for its negative temperature. But, negative temperatures are high, not low,
temperatures, as can be seen from this example— the conditions that led to a negative tem-
perature resulted from energy addition to the system.lh The new energy is

U=y ngey =0+ 5.00° 1016 part - 2.88 - 10729 J/part = L.44 1073 7
j .

Once the system has been pumped as described, a discharge is triggered with a signal at
the proper frequency. As the electrons drop back into lower energy states energy is re-
leased in the form of cocherent emission of photons from different positions in the crys-
ral. This accumulated effect causes the emission of a very high intensity monochromatic
beam whose wavelength is given by

he _ 6.626 ¢+ 1073% J - s/part - 2,998 « 105 m/s

~g

2751 2.88 + 10720 J/part

A= = 6897 A. A vivid red lighe.

[ad

Exercise 2. An isolated Maxwell-Boltzmamn system has three energy levels (g, =0, g, = 10%;
g2 =2.76 - 10721 J/part, g, =3.00+ 10%; e3=4.14 » 1072F J/part, g3 =3.00-10%). The sys-

tem 1s found in a macrostate with n; = 6430, np, = 2610, n3 = 960. {a) What are the over-
all constraints on this system, N and U? (b) Determine whether the specified (continued)

'“Many students may find it discomforting that negative temperatures are "hotter”
than normal positive tremperatures. That is, that temperature is not a monotonically in-
creasing function. (There is a discontinuity as the scale goes from +~ to the next high-
er tem?erature, -=, The highest temperature is -0.) This characteristic can be altered
by defining temperature as minus 8, viz., 6 = -3. A correspondence between the two scales

T and 6 in the order of increasing "hotness" is (T = +0, 8 = =@} T = 4%, B = =0; T = ==,
3=+O;T=_0,8=+°°)'
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(Exercise 2, continued) macrostate is an equilibrium macrostate, that is, is it consis-
tent with eqn. ITIIB-11? If it is an equilibrium macrostate, what is the system's equi-
librium temperature? (c) A second macrostate has n; = 3000. Is this an equilibrium
macrostate?

B. Distribution Functions for Bosons and Fermions

The procedures to derive the distribution functious for Bosons and Fermions are anal-
ogous to that used above for Boltzons. One starts with eqn. IIIB-7 which is applicable to
all statistics. Specificity is introduced by the substitution of the appropriate expres=
sion for Wi, equs. LIIA-7b or c. The development, including the identification of & as
1/kT by the differentiation of the entropy, is presented in Appendix IIIB-B. These results
will be emplo;ed extensively in Units ITIC and D. Students who continue with these units

may wish to examine this derivation. The results for Fermions are

g.
FD
nj = ate JKT (ILIB-14)
e S ]
—3-g, (V) /kT
sFP - % + Nka + k g in [1 +e 3 } (II1B-15)
i
And for Bosons, the results are
BE &
j a + e j’k'r (ITIB-16)
e J -1
—o-g, (V) /kT
SBE = % + Nka - k E gj in [l - e J } (IIIB-17)
3 [

The identification of the parameter o« for these statistics is not easy to accomplish in
general. This step is deferred to Unmits IIIC and IIID, where it is needed for application.

At this point we have evaluated the equilibrium distribution functions for all three
types of independent particles. These will enable us to evaluate the properties of sub-
stances based on microscopic models. The development was done in terms of isolated sys—
tems (fixed U, V, and W). But the conclusions are valid for any svstem in equilibriuam.
The results are simply applied to the nonisclated system in terms of its tnstantaneous

values of U, V, and N.

III. ENTROPY IN MACROSCOPIC TERMS, THE GIBBS EQUATION

We have formulated the second law in terms of the entropy, eqn. ITIB-5. Our original
definition of entropy was in microscopic form, eqn. IIIB-1. 1In the preceding section we
were able to formulate the equilibrium entropy as an analytic function, eqn, I1IB-13, 15

or 17. But the formulation still contains microscopic parameters [Ej(V) and gj].
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Totally macroscopic application of the second law requires that we be able to determine
entropy change on a purely macroscopic basis. We obtain this by combining the energy con-
servation principle with the equilibrium distribution function developed above.

On a microscopic basis the interral energy of a system is U = Z n 3.(V). Qur pre-
vious development concerned isolated systems. The principal means gy whlch closed system
states are altered are through heat and/or work interactions. The relationship between
internal energy, heat, and work is the intrinsic first law. Since our development is in
terms of simple compressible media [Ej = ej(V)], we employ egn. IB-lpc,

de , (V) i
= § ej(V)énj’i +Z (3, —-J—dv ) av = (&Q + dwirr) - pdv

Processes that occur at constant volume must satisfy the condition
do + vt = V)5 IITB-18
Q irr z Ej( ) nj,i (111 )
Such energy addition processes deo not affect the magnitude of the levels, {ds (VY = 0],

vather they shift particles from lower intoc higher energy levels., The volume change is

independent of eqn. IIIB-18; therefore, the terms in dV are also separately equal.15

i de (V)
&W;EV c ==-p dqv = Z (‘n} i _J—_dv ) dv = Z nj idaj (v) (IIIB_lg)
* 3 1] + H]
)

This relationship developed for simple compressible media is valid for other simple and

complex media as well

=70, .de, (V) (I1IB-19)
s i1 ]
J
Thus, if a reversible work interaction occurs to a system in equilibrium (n., L =n. Y} the

J,1 Jseq

system remains in equilibrium during the process (5nj ;= 0). The energy is altered exclu-
3

sively by the change in the level magnitudes. If heat or irreversible work interactiocn

occurs the system must re—equilibrate to new equilibrium states after each energy addition.
Thus rapid heat and/or irreversible work processes tend to leave the system in nonequilib-

rium states. ]
Example 4. The 10" distinguishable partlcles of a flCtlthuS, but illustrative, system
are distributed among two levels (e; = 0, gy = 5+ 10%; ¢, = 6.90+ 10721 I/part, g = 107},
The system is in equilibrium and its total energy is U = 2.07 » 10717 J. (a) Determine the
temperature and entropy of the system in this equilibrium state. (b) Reversible (cont'd)

15Thisg relatlonshlp also gives us the true microscopic meaning of pressurs, as op-
posed to the pseudopressure” of Unit ITIA,

de (V) de (V) de (V)
p. , =-n, . ——; p, =) n, | —le—; p_=})n, —d—
1,1 1,1 dv i i .1 dv eq j jseq dv
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{Example 4, continued) adiabatic work is performed on the system causing the energy levels
to cha?ge to (e, = 2.30 * 10726 J/part, e; = 11.5 » 10721 J/part; g, and g; are unchanged).
Determine the work done on the system and the new temperature.

The energy of the system uniquely determines the distribution since there are only two
states

. _ . oy . 2.07-10"17 1
U nlel + 0,8, = 0+ n2€2’ n2 = - = = 3102 part

©2  6.90 - 10721 I/part

This gives nj = N-ny = (10-3) - 103 = 7 - 10% part. Since the particles are distinguish-
able they are Boltzoms. In equilibrium

Mgy exp (-5; /kT) _ 10* part s 5 - 102 o0
n = Z or Z = = 714
7 - 103 part
Then using
B Ngz exp (-szlkT) £y ;nZZ
n, = - S
82;
or
e - . 19-21 )
T = 2n — = 6.90+ 10 J/part - 324 )
/ : . 103 .
K in '\‘*12 J 1.38 - 10-23 1/(part K)-2a (3 103 part 714) ,
Y8y 10% part - 103
Ans. 2. (a) N =} ny g = 6430+ 2610 + 960 = 10%,
j ¥
U=) n, ;£ =0+2610 part * 2.76 « 10-21 J/part +960 part - 4.14 - 10721 J/part=1.12 - 10717
] Js1 ]
(b) If the system is in equilibrium, then
Ng. exp (~¢,/kT) 10% - 10% e—O
n, . =— ] H or 6430 = ————
1.1 . Z Z

and

4. . 4 - . ~21 . 8 -
sp1o - 10%:3.00- 10 exp[ 2.76 + 10721 J/part ‘\= 3108 o ( 200 K)
T

Z 1.38 - 10723 J/(vart X) Z T

“ . 10" - - 1072} - 108 ~300 K
060 < 10% 7 3.00 104 [ 4.14 - 1072} j/pare ]= 3 exo [ )

- A
z 1.38 - 10723 Jfpart K)T T

These are 3 equaticns in twoe unknowns (Z and T). We can solve for 7 with the ny condi-
tion; Z = 1.56 - 10%. Then solve for T with the n» condition; T = 100 K. Then test to seg
if these answers are consistent with the n3 condition; they are. The macrostate is an
equilibrium macrostate. If np = 3000, then

U= ns g5 T 112 - 10717 J = 0 + 3000 - 2.76 - 1072} J + ng * 4.14 » 107! J/part gives
ny = 700 and n; = 10% - 3700 = 6300. This is not an equilibrium state. 1t does not obey
eqn. IIIB-1l. Other equilibrium states for this system are

= = = = = 2607 = .
(nl,eq 6429, n2,eq 2613, n3,eq 958) and (nl 6431, n2 2 R n3 962)

These still satisfy eqn. ITIB-11 with T = Teq = 100 K, to three-place accuracy.
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Then
. -17
S = —g- + Wk fa Z = M%%er + 10 part - 1.38 - 10723 J/(part K)- 2n 714 =97.0 - 10~20 I/K
(b) the work interaction is adiabatic reversible, dW = E n.de,. The distribution is
- rev i
unchanged n, =n, . Thus

isb 3,4

Ub = nlsl,b-knzez’b==7 + 103 part - 2.30 « 10721 J/part + 3+ 103 part *+ 11.5 » 10721 J/part

= 5,06-10717 7

The work can be determined from the first law

U -U =/{+ ‘;}2/ + W= (5.06-2.07) - 10717 = 2.99- 10717 J
b a rr rev

The new temperature can be determined directly by writing the ratio

i (Ngl exp (—el’b/ka)) ( ” )
N

n, Z g8, exp (-Ez’b/kTg
or
£ - E - . -1
r, - 2,b _ ;,b _ (11.5-2.3) - 10 J/pazt -3k
k on (—1—2) 1.38 - 10723 J/(part K)-2n ( 7:10° part: 10~ |
M8y 3. 103 part + 5+ 102/

Exercise 3. Exmp. 3 considered work addition to "pump" a ruby laser into a lasing condi-
tion, viz., to achieve a megative temperature. Reexamine this problem and decide whether
it was reversible or irreversible work that was added.

The solutions of the preceding problems depended on insight gained by making a micro-

scoplc distinction between a reversible work interaction, &Wtev = Z nj idEj’ and that of
+ L]
. . i . s .
irreversible work and/or heat, &Q + dwirr = Z €j5n. .. That this distinction also allows
j ’

us to establish entropy change on a totally “macroscopic basis is evident if one differ-
entiates the microscopic expression for the equilibrium entropy for any of the three sta-
tistics, eqn. ITIB~13, 15 or 17. Among the resulting terms will be an expression for re-
versible work, eqn. IIIB-19. Identification of this term gives the desired connection

between entropy change and other macroscopic variables, the Gibbs Egquation.

au -

ds = —TFE-‘—’ (IT1D-20a)

The derivation of the Gibbs Equation is completed for Boltzons in the following example.
As a further example the same technique is employed in Appendix IIIB-B to complete the

derivation for Fermions and, as an exercise, for Bosons. The result is the same for all
three particle types. The Cibbs equation, which 1s our principal bridge between proper-—

ties, is not restricted to a particular type of particle.
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Example 5. Differentiate the equilibrium entropy for a closed system of Boltzons and sub-
stitute eqn. IIIB-19 to derive the Gibbs equation.

The equilibrium entropy of a system of Boltzons is given by eqn. IIIB-13. Its differen-
tial in a closed system (N = const) is

a(s™®

dU _UdT | Nk [(az('r v)) ar +{22LL.9)) dv}

TZ z aT 3v

)lN = d(% + Nk in Z(T,V))IN . T

Now by the definition of Z, eqmn. IIIB-12

- -¢, (V) /KT
W (BZ(LY)) _ Nk |3 ej(V)/k Nk EJ(V
z ( aT )v Tz [ar Q 8¢ v 7kT2 E £485°

Substituting the distribution functiom n?B = [Ng, exp (-gj(V)/kT)]/Z, we obtain

b
Mefoz) _clggm, oL
Similarly
N (BZ(T,V)) Nk (E e--ej(V}/kT) Nk X de, (V) . e—aj(v)/KT
Z av z av 8 . ZKT v 5j
. , . MB
and again substituting nj , we have
Nk .f_a_g) --lZn“BdE ¢
Z av T T 3 j av
Thus the differential entropy is
y i
dstBy = QU UdT L | ZHMB dsjm qy=9U _ __rev QED
Iy =7 17 T 5 av T T ’

IV. DETERMINING ENTROPY PRODUCTION

Equ. IIIB-5 is the most general form of the second law. But its use requires the
determination of entropy change. The Gibbs equation is the origin of all macroscopic de-
terminations of entropy change. For general complex, simple, and simple compressible

media it is, respectively

K
i au - } F, - dX
i - du - dw__ ) k=1 ¥ i (IIIB-20a)
T B T
T 45 = _@_U_-.Tiﬂ . ds = Q."_*'TFP_QL (IIIB-20b,c)

The Gibbs equation is valid for any process between equilibrium states; it is independent
of the path.
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Fxercise 4. Write the Gibbs equation for: (a) A simple magnetic substance, (b) A simple
electric substance, (¢) A complex substance with appreciable compressible and surface work
modes.

Exercise 5. When the Gibbs equation is applied to an isolated system (du=dv=dN=0), it
predicts d5=0. But the second law for an isplated system, eqn. I I8B-4% , is dS 2> 0. Are
these two statements in conflict? How can their difference be explained?

Although the Gibbs equation s our principal means to evaluate entropy change, it has
no direct second law significance.16 Second law significance is obtained when the entropy
change for the system and the surroundings are substituted into eqn. IIIB-5 to determine
&Suniv' This quantity, which is a measure of the irreversibility of a process, is called
its entropy "production' (or just production).

It is helpful in tﬁe‘development of engineering judgement te recognize how produc-
tion originates. If we substitute the intrinsic form of the first law, dU=dQ+dWirr+&Wiev,
into the Gibbs equation we obtain

@ ol
d§ = ——— (ILIB-21)
We have established the fact that irreversible work is positive semidefinite, dwzrr > 0

(Unit 1B, Section IIT}. Therefore, eqn. IIIB-21 can be expressed in the form

ds = ég (IIIB-22)

This expressiom, called the Clausius inegualizy, indicates a second law limitation imposed
upon the system alone. When Clausius inequality is applied to a closed system undergoing

an adiabatic process, we see that its entropy can only increase.

dS| 20 (I1IB-23)
ad

Though this expression has the same form as eqn. IIIB-4, it is not restricted to isolated
systems; work interactions are allowed.

Eqn. IIIB-23 is not a complete statement of the secand law. It only describes the
second law consequences for an adiabatic process. Each of our second law statements,
eqns. ITIB-4, 5, 22, and 23 expresses a tendency for the entropy te increase. The student

must remember that it is the entropy of the universe, not that of an interacting system

that cannot decrease.

167he Gibbs equation also provides a general 1ink between measurable and unmeasurable
properties. It is the basis for the develapment of the Maxwell Relations, Unit IVD.

-

Ans. 3. Initially the entire crystal was in equilibrium. The "oumping" process added end
ergy to the lasing states causing a nonequilibrium condition in the crystal. As discusseq
above this requires irreversible work (or heat). Further zvidence that this is the case
is provided by the fact that the energy levels of the lasing states are not altered.
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Exercise 6. The fellowing facts are known about five separate processes that occur to a
closed system. Specify, as best you can, the entropy change that cccurs to the systam.
Answer increases, decreases, or can't tell. Process (a) Q =235 (b) § =-2J; (e)Q=-2J
and W = 3 J; (d)Q=-2Jandw;rr=1J; (e)Q=-2JandWin_=35, .

Exercise 7, A closed system undergoes a process with an entropy change of -2 J/K. What
conclusions can be drawn about (a) the entropy change of the surrcundings? (b) the direc-
tion of heat flow? )

Exercise 8. A system is made to undergo, in turn, two processes between the same initial
and final equilibrium states. One of the two processes is reversible, the other irrever-
sible. Which process will result in a greater entropy change of: (a) the system? (b) the
universe? What is the entropy change of the universe for the reversible process?

The production that occurs within a system can be explicitly determined by carefully
examining the terms of egn. IIIB-21. We define them as the thermal and mechanical entropy

change, respectively.

dQ + th]i.-rr )
ds = — = dsth + dsm (IT1B-21)
eq
where
i
dw
- 49 : —iIT -24
dSth =7 dSm -7 {I11B-24a,b)
aq eq

We have explicitly identified the temperature as its equilibrium value, Teq' This specif-
icity is necessary since we will deal with systems that are not in thermal equilibrium,
i,e,, those with nonuniform temperature. The equilibrium temperature corresponding to a
nonequilibrium state is the temperature that would he achieved were the system isclated

and allowed to relax to equilibrium.

ote to the Student. In the following sections we identify the sources cf entropy produc-
tion. We reinforce these principles with nwrerical illustrations requiring separate con-
sideration of the magnitude of force and temperature Jdifferentials within the system.

Use of these calculation procedures is not an objective of the unit. (Calculation of the
net effect of thermal and mechanical irreversibility are cbjectives of Units IVA and IVC.)
Study these problems inscfar as they help you to recognize the sources of mechanical. and
thermal irreversibility.

A. Mechanical Entropy Production

i .
Since irreversible work is positive semidefinite, dwirr 2 0, the mechanical entropy
term is pure production.
. ds = ____Tlrf >0 (IIIB-24b)
eq

Mechanical irreversibility canoriginate in any intrinsic work mode. As specific illustrations,

we cite the three mechanical irreversibilities considered in Section IIL of Unit IB.
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The Sticky Spring. We use the sticky spring to model real spring behavior by
accounting for a friction component Fg = K(XS-XS o) + §F,. The irreversible

work is found to be dwirr = iéFstSl. Thus the méchanical production is
|sF_ax_|
ds = —=-S5-
Sm T z 0
eq

Viscous Fluid Flow. The motion of a viscous fluid during compression work
produces pressure drop and irreversible work

i | (pgP, yav|

T
eq

ds 2 0
m

Electric Resistance., Entropy is generated at a rate that is proportional to
the current squared.

EEE:ﬁgzo
dt T
eq

The sources of mechanical entropy prodaction arise due to friction within a specific in-
trinsic work mode. The following example shows, more specifically, the effect of produc—

tion on a practical system.

Example 6. A large ship requires a propulsive force of 8000 lbf to realize a speed of 20

knots {approx. 23 mph). This energy is dissipated into the ocean, primarily in wave mak-

ing (but with some surface friction) as the ship moves. Calculate the rate of increase of
the entropy of the ocean as a result of the ship's passing. (The local ocean temperature

is 520 R.)

For purposes of analysis, choose the ocean as the system. Using the intrinsic form of the
first law on a rate basis, we have

-1 i
dv _ %éf+ aWirr - dv ey
dt t dt t

The water is a simple compressible substance and its volume does not change; so the in-
trinsic reversible work is zero. The transfer mechanism of the propulsive energy from the
ship to the water is force acting through a resistance; hence, it is irreversible work,
not heat. We have

4u _ __itr _ gap0 1b

. i . i1 = - 108 -
Ic It ¢ 23 mil/hr - 5280 ft/mil = 9.7 - 10° f¢t lbf/hr

The rate of increase of the entropy of the ocean (and the universe, since the ship is in

steady state (ds/dt)ship = (), can be determined from eqn. IT15-7.

du—u v + dM
Q

~vE » dP _ o+ —
Ans. 4. (a) ds = T (b} ds = EE—!%——QE (c) ds = éE—Egg—Eﬂi

isolated system increases untll it reaches equilibrium. After that dS|isol = 0. There

Ans. 5. The Gibbs equation is applicable between equilibrium states. The entropy of an

is no inconsistency in the statements.
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i . 8 /
ds _ 1 {& . dwirr) B Qﬁ 9.7-10° £t lbf.hr

-1 - - - 2.4 107 BIU
dt T T \dt ' at dtl 530 R 778 f¢ Iv /B0 | o4 107 BTU/(hr B
eq m f

The part of the ship's power that was used to overcome hull-water friction resulted in
immediate entropy productiom. That part of the power that went into wave making was iui-
tially reversibly converted to kinetic and potential energy im the bow and stern wave.
But this energy is subsequently dissipated as the wave action is damped.

B. Thermal Entropy Production

Since heat can enter or leave a system, dsth’ unlike dSm, is not pure production.
Indeed thermal entropy change contains both a reversible and irreversible component.
Since our purpose is to identify production sources, it is desirable that we separate the
two components. We begin by observing that heat interactions require a differential be-

tween the boundary, TB’ and system, Teq, temperatures. We define

6Tneq z TB - Teq (I11B-25)

If this definition is substituted into eqn. IIIB-22a, we obtain

dq sT
s =92, "Tneg (1T7B-26)
th T T T
B eq B
Exercise g. Substitute eqn. ITIB-25 into eqn. IIIB-24a to derive eqn. IIIB-26.

Now consider the sign of the second term. If heat is to leave the system, d < 0, the
interior must be hotter than the boundary, 6Tneq.< 0. The term is positive. Conversely,
if heat enters the system beth &Q > 0 and 5Tneq > 0; the term remains positive. This is

a positive semidefinite component. It is the thermal entropy production.

Q 8T
- neq _
dsth,irr Teq T, = 0 (ITIB-27)

Ans. 6. Refer to eqn. IIIB=21, or 22. (a) When Q is positive system entropy must increase.
(b) When Q is negative entropy could decrease; it depends on the magnitude of Wi,... Can'd
tell. (c) Still can't tell, since Wipr is still unknown, (d) Q is negative and larger

than W}_..; decreases. (e) Q is negative but less than Wip,; increases.

Ans. 7. (a) AS, i, 2 0. So for this process ASgyrr 2 2 J/K. (b) a decrease in entropy

in a closed system can only occur due to heat rejection.

-

Ans. 8. (a) Entropy is a property. The change in all proverties between two specified
equilibrium states is the same for all paths. (b} The entropy of the universe cannot de-

crease. For the reversible process 45 . =0. For the irreversible process A3 . ? 0.
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Thus necessary and sufficient conditions for a reversible heat effect are that ir occur
without a temperature differential,

The first term in eqn. ITIB-26 changes its sign but not its magnitude, if the direc-
tion of heat flow is reversed. It can be thought of as a revecsible transfer of entropy

between the system and its surroundings.

|

Sth,rev T (ILIB-23)

B

When this expression 1s solved for dQ an analogy with intrinsic work is recognized

= i = T - ¥
dq = TBdSth,rev dwk FB,k i )

In this analogy boundary temperature, T., plays the role of boundary force, and the

%B k’
+ Plays the role of displacement, dﬁk'l? The

B!
reversible thermal entropy change, dsth,rev

analogy can be extended to recognize the reversible and irreversible components of a heat
interaction., This is accomplished by substituting eqn. IIIB-25 for the boundary tempera-
ture.

d0 =T + 4

d
eq sth,rev Tnequth,rev

= = — b
&Qrev Tequth,rev aQirr STnequth,rev (I1IB-2%a,b)

Lf this analogy is to be complete we require that &Qirr 2 0. We leave this verification
to the following exercise.

1 is positive semidefinite. Use a physical argument based

on the relationship between tﬁg signs of 8T and dS .
neq th,rev

Discussion of the analogy is continued by examination of the relationship between thermal

entropy production and irreversible heat.

Example 7. Show that thermal production is analogous to mechanical producticn by demon-
strating that d§__ . = dQ. /T  3just as d3 = dW., /T .
th,irr irT eq m irr’ eq

The proof can be completed with eqn. ITIB-27 by substitution of dS = (dQsT Y/ (T.T £
r i

and the introduction of eqn. IIIB-28 . dg = ds 61 /1 a0, 18
, . : the. sub-
stitution of eqn. ITIB-29h gives th,irr th,rev™ ‘neq’ “eq Yo
dq

_ irr
dsth,irr T
eq

We have now codified the mechanisms of entropy change within a closed system into

three components

17 . . . . .
There is an apparent discrepancy in this analeogy in that d§ is only part of
the ent h X i i i nevth c
ropy change, whereas dX is all of the mechanical displacement. The rationale is

that only that part of the entropy that is conserved can be.considered to cross the boun-
dary. All of the displacement is conserved.
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do sT dut
= - ég neq irr _
ds dsth,rev + dSth,irr + dsm . YT + T (II1B-30)
B eq B eq

Only the irreversible terms contribute to preduction. The reversible term has no effect

on the entropy of the universe.
Example 8. Show that dSt does not contribute to the increase of the entropy of the

- h,rev
universe.

To demonstrate this result we apply eqn. TIIB-30 to both the system and the surroundings
and substitute into the second law, egn. IIIB-5, ’

i .
. dg sT dw dn ST dw
ds  =ds +ds ___iQ__'_ neq  _ irr +§Q+ neq  _ irr >0
univ 8YS surr T T T T T T T T
B eq B eq “sys B eq B eq ‘surr
Heat that enters the system leaves the surroundings, dqsys = -dqsurr’ and by definition,
the boundary temperatures are the same in both terms, T = . We see that
B,sys B,surr
f
ds + ds o D =0
th,rev th, rev T, i T
SVs surr B'sys B'surr
and
= + + +
dsuniv (dsth,irr dsm)sys (dsth,irr dsm)surr
i i
&Q aTneq &Wirr &Q STneq thirr
= + + +
T i e IR e by
eq B eq ‘sys eq B eq /surr

The preceding example demonstrates that production originates im both the system and the

surroundings due to thermal and mechanical irreversibility. If there is ne production

within the system the process is said to be "internally reversible." A reversible pro-

cess is one in which there is no production in either the system or the surroundings, that

is, &5 . =190
univ

Like mechanical irreversibility, thermal irreversibility deteriorates performance.
We have supgested a thermodynamic design principle— an optimum design is one that accom-
zlishes given objectives and resulis in the minimen increase (or rate of iIncrease) in the
entropy of the wuniverse. The validity of this premise, as it relates to thermal irrever-
sibilities, will be expanded by the consideration of thermal engines, Unit IVB, and heat
exchangers, Unit TVC.

Example 9. A styrofoam ice chest has an inside and cutside wall temperature of 32°F and
80°F, respectively. The insulatory value and thickness of wall are such that heat enters
the cooler at a rate of 10 BTU/hr per square foot of surface area. Taking a square foot
of the wall as the system, determine its rate of reversible and irreversible (continued)

T

Ans, 9, ds =T—aq-=§9T—B=—-@~(T + 8T )
eq

th TB eq TeqTB eq neq
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(Example 9, continued)} entropy change. What is the nmet rate of entropy change of the
styrofoam? What is the rate of increase of the entropy of the universe as a result of
this process?

The styrofoam acquires reversible entropy at its outside boundary and loses it at its in-

side boundary. The net result is

148 _Qf1 1y 2y (-1 __1 3_ 2y

T A7 T "0 BT/ (br £e) (540 e a) ~-0.0018 BTU/(hr £t2R)
th,rav Vi i

Notice that this term represents a decreasing system entropy. To find the thermal produc-
tion, we must determine Teq' In this system we expect a linear temperature distribution.
Thus

T + T,
_ o i {32 + 80)°F _
T = = =
eq 2 2
Heat crosses the boundary on both surfaces so there are also two components to the thermal
entropy production,

36°F = 516 R

Q (To -T ) Q, (T, - T )

1 ds] 0 ‘o ‘e’ 175 “eq’
Adel . . TTA TT T A T. T
‘th,irr 0 ‘eq i "eq

~10 BTU/(ht ft2)+ (=24 R)
492 R+ 516 R

. 10 BTU/(hr £62)-(24 R) |
540 R - 516 R

= 0.0018 BTU/(hr fr2R)

Notice the cancellation of the reversible and irreversible components
1 ds _ 1 ds; 1 ds|

= = == o =0
A dt th A de th,rev A dtith,irr
The system is in steady state. All properties are time invariant., The production occurs
in the surroundings. (We assume they are uniform in temperature and are thermally revers-
ible.)
1ds! L ds! 1 ds| Q 1,1 2
= = = == + = == = - ==+ =] = 0. U 2
A dc. A dt A dt.. A ( T T (.0018 BTU/(hr ft-R)
'SUrr ‘o,5uUrr i,surr o i
and the net production for this process is
1 ds 1 /dg] ds ! s
=52 =< vl = 0. ft°R
et ()Z{l + o2 ) 0.0018 BTU/ (hr )
univ syst Isurr

The entropy of the universe is growing— the process is irreversible. 1If the production
could be reduced would the design be better? Yes, thicker or better insulation would re—
duce &/A and, therefore, reduce production. A final redesign decision would of course in-
clude consideration of cost and profit. i

The preceding example illustrates for a system dependent primarily on heat effects
what we saw earlier for work dominated systems, that minimization of production is a use-
fal design concept. The examples that we have used to illustrate this principle have been

too obvious te illustrate fts full significance. But when two quite different design

Ans. 10. For heat out, 6T .4 < 0 (see eqn. IIIB-25), and dSth’rEV‘co (see eqn. IIIB-29b).

Thus inrri>0. For heat in both 6Tneq and ds:h.rev are positive,

W ik,
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concepts or two different design modifications are under consideration, it may not be ab-
vious which is better. In these cases a determination of production or the reduction in

production for both alternatives can be an important criteriom.

Exercise 1l. A transmissiom cable in steady state carries a full load current of 3 - 10% A
and has a resistance per length of 1.2 ° 10° Q/m. The joulean heating within the wire re-
sults in a mean temperature {an equilibrium value) that is 1.5°C above the surface tem—
perature, 50°C, Calculate the magnitude of the thermally reversible and irreversible, as
well as the irreversible mechanical contribution to the rate of entropy change of the wire
(in W/m K), What is the rate of change of the entropy of the wire? What is the rate of
increase of the entropy of the universe if the surroundings are reversible?

The problems of this section have specified a temperature distribution to enable the
determination of thermal entropy production. The procedures by which such temperature
distributions are deduced are treated in heat transfer courses. Thus the detailed consid-
eration of thermal and mechanical production within the system by an explicit determina-
tion of GTne or aﬁneq is beyond our scope in this course.l8 1In subsequent units we will
determine only the net production, ASu . . The student should continue to recognize the

niv
contributions to such irreversibilities as to their thermal or mechanical origin.

SUMMARY QUESTIONS

The following questions are designed to aid you to verify your understanding of the

important concepts of this unit before beginning application of the second law.
1. What condition does the second law impose on the entropy of the universe?

2. State a sufficient condition to assure that the entropy of a closed system
increases.‘

3. What are the necessary and sufficient conditions to assure that the entropy of
a closed system will decrease during a differential process?

4. What restrictions are placed on the application of the Gibbs equation,

ds = (du + pdv)}/T?
5. What property is constant during an adiabatic reversible process?

6. What is the difference between an internally reversible process and a reversible
process?

7. State a sufficient condition to assure that thermal entropy production is not
present within a system.

8. To combat the "energy crisis" we are bombarded with the slogan "conserve energy."
From a thermedynamicist's perspective this request is vacuous! What is wrong with it
and how would you rephrase it?

l8The determination of mechanical irreversibility is a tepic of such courses as fluid
and solid mechanics, electric circuits and electromagnetic fields.
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ANSWERS TO SUMMARY QUESTIONS

1. The entropy of the universe cannot decrease, &Suniv = 0.

2. From Clausius inequality, dS > dQ/T, we conclude that if heat enters a closed

system its entropy must increase.

3. From the preceding we see that a necessary condition is heat rejection, dQ < 0.
Sufficiency is added when |dqQ| > [dwirr . {(See egn. IIIB-21.)

4, The Gibbs eguation is a relationship between properties. It 1s applicable to any
process, reversible or irreversible, that begins and ends in an equilibrium state.
The form shown is restricted to simple compressible media but the equation can be re-
formulated for any substance.

5. The entropy.

6. An internally reversible process precludes entropy production within the system.
(Production can occur in the surroundings, often at the interface between the system
and the surroundings.) In a reversible process there is no productien in either the
system ot the surroundings, AS . = 0.

univ

7. The temperature in the system is uniform.

8. The first law demands that energy be conserved. "It can't be destroyed '
"Minimize entropy production” is a suitable new phrase, but we have a sericus commu-—
nication gap. Perhaps conserve "available energy" (see Unit IVA} would be more mean-
ingful to the public at large.

Ans.

d 40 irr ev
, =50y Ty
I1. The cable is steady state. ;ﬁ? e + at dt
dut ds dwi
S %1 = dltr" = T2R = 1.08 * 10% W/m '&‘E@ = ——Tl ————dlt“ = 33.28 W/ (m K)
ds - ds, 6T
h d
—Iev.th Ti g% = -33.43 W/ (m K MBS o 2 R=o015w@mw
B eq B .
T ds ds, ds
%% = rgz,th 1§E’th + iﬂ? = 0, the wire is in steady state.
ds . ds_ ds L 4@
univ 5YS + surr _ L 'sS¥ys = 33.43 W/(I’ﬂ K)

ae dt de Tg  dt
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DIFFERENTIATION OF SMB

The entropy of a macrostate is defined by eqn. IITIB-1. It is specialized for Boltzons
by substitution of the expression for the number of microstates in a Boltzon macrostate,
egn. LILA-7a.

n, .
g 3,1

ST =k in WT;  where e = T (1118-1,1TIA-7a)
‘ j 3.1

A cq s . - . . . MB L . .
To derive the equilibrium distribution function, n, , 1t 1s necessary to differentiate
]

¥B >
Si with respect to nj 5 and simplify.

gnj’i
d{sy) = kd [zn wl,m) - kd {m (N! TI'-—L—,)]
i i ., o, .!
J J.=
Differentiation is simplified by expressing the logarithm df a product as the sum of

the logarithms, viz.

2 = e vy = .=
n(ﬂ]; xj) Qn(xl Xy X, ves) in % + in %5 + 2n x4 + .+ § in x

Applied to in wi , this yields

g“j,i
i (M TTA—) = 2a ) +T (0, . g -in (m 1]
i nj,i! j 3.1 i jsi

This vesult can be further simplified by representing the factorials using Stiriing’s
approximation

Y x -x
x! = (2rx)° %" e

(IIIB-AL)
Stirling's formula is accurate for arguments x 2z 10 (see Table IITB-Al). But we need the
logarithm of the factorial. The logarithm of eqn. ITIB-Al, viz., &n (x!) = [&n {2mx}/2 +
X In or x-xprovides the required result. But the first of these terms is small in com-
parison to the last two and can be omitted when x 2 102.

tn (x!) = x &n x - x (IIIB-A2)
The accuracy of this approximation is illustrated in Table IITB-Al.

TABLE ITIB-Al: THE ACCURACY OF STIKLING'S APPROXIMATION, equs. ITIB-Al and A2

- x x! \'E:“_\;‘\"l frixty :g.l..(..’.‘.:)-_f”t’_’\ B
vox! rix
10! 1,628+ 100 n.76 1.510 - 16 13.%
: 160 5 .
10 9.333- 10 0.082 3.637 + 10 0.8
3 2570 1%
10 4.026 0 10 0.0083 5.914 » 10 0.108
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Substituting eqn. ITIB-A2 into iniyi , we obtain!?

MB
in W, = N &n N-N + E (n, . f&n g, -n, ., fnn, ., +1n, .|; then since N = Z n. .
i j! jsi i isi i,i j,i E .1
SMB=kN£nN+kZ[n 2 tn 1
i : i,i n gj 1'11.’i nj,i (1I1B-A3)
The differential we require is obtained (N and gj are constant} so,
n, .
d(s@) - kd(zn wl_@) =7 (i,n g. - =21 _ nn, ,)ﬁn, ,
i i P j n, . 1,1 J»1
] i1
and using the fact that Z én, i 0, we have
j )
2,
d(s’.m) =k J a — sn, . (LIIB-AG)
1 A n. . J.1
] Jsl

APPENDIX TIIE-B

EQUILIBRIUM CHARACTERISTICS OF FERMICGNS AND BOSONS

The text of the Unit uses systems of Boltzoms as its illustration in the development of
equilibrium characteristics in microscopic terms. This appendix presents similar develop-

ments for Fermions and Bosons.

1. THE DISTRIBUTION FUNCTION FOR FERMICNS AND BOSONS

In this section we develop the distribution function for a System of Fermions and set
up an exercise to determine the distribution function for Bosons. The distribution fune-

tion for any system of independent particles is determined by solving eqn. ITIB-7.

(S Ay - aNl = - - = -
d(z~ BU - N d(ﬂn ij 8 § sj(V)énj’i a E LI 0 (II1B-7)

The wvariation in the solution stems from the substitution of Wi for the different statis-

tics described by egns. IIIA-7. For Bosons and Fermions these are

=T (g.+n, .-1)! g.!
w?E = ——-1——-1’-——-——( l)'ln = 3 W= T = 3)r — (IITIA-7b,c)
P - PR 1 N Pl ¢ SURRE B PP
7 LIS 1,1 j 73 .t J.t

1%The use of eqn. ITIB-A2 for Zn{m; ;!) does not imply that no single n; ; is less
»
than 102; but rather that the sum over 3’ remains accurate since many n, ; are much great-
er than 102. 3>



APPENDIX B 97

Fxampie Bl. gubstitute eqn. IIIA-7¢ into eqn. ITIB~1 and simplify using Stirling's approx—
imation for the logarithm of a factorial (eqn. IIIB-A2) to develop 53" as a sum of two

terms in n, . and g,-
i.»i 73

The logarithm of eqn. ITIA-7c can be expressed as a sum by using the rule for the loga-
rithm of a product (see AppendixIIIB-A).

FD
en W, = n )y - fn ~n. '] - &kn (o, .!
s }‘[ (g1 [(g5-ny ;! (ay ;]
Then when #n x! = x & x-X {eqn. IIIB-A2) is used to approximate the logarithms, we ob-
tain
in WL.:'D= y [g, tng,-g, - (g,-n ) fn (g.-n. V) +(g.-n, )-n, , nmn, . +0, ]
1 i ] B ] N P J 31 ] 1.1 1,1 LTS 1,1

Cancelling and collecting terms we obtain the encropy, eqn. IIIB-Bl shown below.

The expression for the entropy of a Fermion macrostate was simplified in the preceding ex-

ample. It is

g, g,-n.
st =k !.n(wP.‘D)=k 7 le, tn (—-—J— +a, . %n (—1-—1—1 (T11B-B1)
' gl ey L T

* r

In the following example this expression is differentiated to derive the distribution

function for a Fermi-Dirac system in equilibrium.

Example B2. Differentiate eqn. 1TIB-Bl (at fixed N and V). Then use eqn. I1IB-7 to ob-

tain the most probable distribution, nj - in terms of « and B.
»

It is somewhat easier to differentiate the logarithms when they are written separately,
see the last equation in Exmp. Bl. 1Its differential is

,SFD F {g.,-n. i) n, gLy
d(;%—) =d(9,n W_DJ=Z{+Zn (g,-v, - tnfn, ],)+-(-J_—nah-—)—-—h—n s, (=1 (—J—-—J—Ln Sy 4
| "3 o BAteyTye Tyl g 3.1 ’
Then substituting into equn. I1IB-7, we obtain
‘g0, i\
¥ [?n (—l——lL— - = e, (V)] 8n, , =0
" n. . 3 1,1
J AP
But since 5n, ., are linearly jindependent, each coefficient separately satisfies
in " } =a + Bej(V)
1 j,mop
And taking the antilogarithm we obtain eqn. IIIB-B2Z, see below.
The equilibrium ﬁistribution for Fermions is
g.
FD
= I11B-B2
Dy omp  atBe. (V) ( )
e J +1
20gj is a constant.

b
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The interested student can repeat the same steps for Bosons, Exers. TIIB-Bl and
B2, below. 1In this case the appropriate expression for Wi is eqn. IIIB-7b. When this ex-

pression is substituted into eqn. IIIB-1 and simplified we obtain

BE BE g,Hn. 5 g.tn, { \
S, =k nW, =k ig tin (—J-—J-’—J +n, . in [—Ll'—) (TI18-B3)
i i , ] g. i,i o, . .
S 3 3.1
Then one differentiates this result 'and soclves eqn. IIIB-7 to obtain
nBE = ] 4
§,mp aBe (V) (ITIB-B4)
e J -1

Exercise Bl. Take the logarithm of eqn. IIIA-7b and use Stirling's approximation for the
logarithm of a factorial, eqn. IIIB-A? as well as the assumption that g, >>1 to derive
eqn. IITB-B3. - ]

z

Exercise B2. Differentiate eqn. IIIB-B3 at fixed N and V. Then use Lagrange multipliers
in the form of eqn. IIIB-7 to derive eqn. IIIB-B4.

The parameter B can be identified for both Fermions and Bosons using the same proce-
dure as employed in the text for Boltzons. It requires the differentiation of the

equilibrium entropy with respect to the energy holding the volume and number of particles

constant, i.e., determine (aseq/au) We {llustrate below for Fermions.

N,V

FD by substitution of eqn. ITIB~B2 and

Example B3. Obtain a simplified expression for Seq

elimination of nFD 0 from eqn. IIIB-BI.

Ut
We begin by writing eqn. IIIB-Bl in a more compact form.
g. g,
SFD =k &n WFDJ = k Z g, in —_—L 4k z n?D tn |—— -1
eq L mp 3 FD 3 j nj mp

Panl 1 99
g] 1,M|

Then arranging eqn. TIIB-£2 in forms suitable for substitution

g. 2.

tn [—=— ~|t = a+Re (V) and i = L = l+exp [-o=3= (V)]
FD j —nFD 1- 1 3
j,mp gj Jsmp | exp {u+85j(V)]+l

This gives

1

FD FD !
5 =k n, atfe ., (V)] + k ctn {l4+exp [—a-Re,(V)I}
eq ) jymp TEE; (V] -.E.:g_] P i
J ;J
Since N = Y nFD and U = E nFD £,.(V), we obtain the relationship
E I.,mp i J,mp ]

2lpecall that gj is a constant.
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D —-a-Be (V)
s*0 = xpU + Nka + k | g, 4n |l+e 3
eq §73

29

The terms in the partial derivative are?!
FD _Q-BE - (v)
(aseg 38 30 ) —€,8.e 38
= kB + kU= + Nk[=] o+ 2B
au ) (“U) (BU) 5 ~a=B8e (V) (NJ
N,V YN,V NV O34, N,V
-a=Be, (V)
-g.e J
+k . (aa)
- -a—Be (V) VU NV
J14+e '
Then recognize that
-a—st(V)
D _ 55 _&®
Bimp | atBe, (V) Za-Be (V)
fe 3 411 [l+e I

And substitute to obtain
FD

1 1

Example B4. Use the form of Szz developed in Exmp. Bl to show that CBSEE/BU)N v
L]

s
~£ﬂ -k8+k€% @-an sz}+k@% @—Zn@ )
3y N,V au N.Y > Ti,mp ] 3U N.V T i,mp

kg.

tion functions and entropies of Fermions and Bosons as

['IFD — g] BE _ g.
j,mp ate (V) /KT 2y ate (VKT
e J +1 e 3 -1

—a-¢ , (V) /kT
SFD=.U.+Nka+ng,9.n |:1+e ] J
eq T 3 3

—a—e . (V) /KT
SBE = E.+ Nkoa - k Z g. in I}-e J ]
eq T F j

is sufficient to obtain the result. Thus 8 = 1/kT is valid for Fermioms.

A review of the identification of B im Section II will reveal that (aseq/aU)N v = kB

The following

exercises obtain analogous results for Bosons., We thus obtain the equilibrium distribu-

(ITIBE-B2,~B4)

(IITB-5)

(IIIB-6)

Ans. Bl. The logarithm of eqn. IIIA~7b by the product rule is
E
]

Then, since g. 7> 1 and by &n x! =2 x Lo x-x, we have

B = — — - -
WO = i Bn [(gj+nj’i 1D!] - 2n [(gj 13!'] - on (nj!i!)}
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P.W— + L + -(g.¥n. d-g, tng +g.-n, _in (n. )+n, .
Z[anj)n(gﬂ)(gj)gJ A 3,070y 5]

Collecting terms with common coefficients, we have
g.tn. g+,
en W?E =T g tn (_.L_J_l) +a, , in (,.ln_.l_lJ
j % 1 ist
s < f s . BE BE
This gives eqn. IIIB-B3 when multiplied by k, i.e., Si =k fn Wi .

Exercise B3. Derive S » eqn., I1IB-6, in terms of 8 by substituting eqn. IIIB-B4 into
eqn. IITB-B3 and 51mp11%y1ng.

Hi-
[
-
(9]

_BE
Exercise B4. Partially differentiate eqn. III-6 to show that (aseq/aU)N v =

II. THE GIBBS EQUATION FOR FERMIONS AND BOSONS

The Gibbs equation was derived in Section IIT of the texr by differentiating the en-

, i
tropy and recognizing the microscopic expression for reversible work, awrev:=z nj idsj(V).
?

This same procedure can be followed for both Fermions and Bosons. We demonstrate the pro-
cedure for Fermions in Exmp. B5 and ask that you complete the same derivation for Bosons,
Exer. BS.

Example B5. Differentiate eqn. IIIB-B5 at fixed N and simplify to obtain the Gibbs equa-~
tion.

The development is very similar to Exmp. B4. We differentiate term by term

de, (V)dV e, (V)}dT
dSFD’ S WT g, +kz 8 ) ~da Tk AN & )
NTOT 2 ate (V) /KT dv KT?
e 3 +1
P FD
Then recognizing nj oo’ e have
FD
k}n, e[V : F
FDy _du_ (U Jamp ] + - &V af? )da-l afl de (v
S [T2+ - 4T+ (N - ke Tg ompt;
or
Ans. B2. Differentiate the terms of eqn. IIIB-B3, to obtain
SBE g ‘g .+n n n g, +n
d__l._=z"—--—-j—-+£n-*j—-—j—1—i+ i.1 —j’i(ﬁn..=zln _}_‘L"—lﬁn._
k C|g.tn,. n, . g.+’ﬂ. . n. . Js1 . n, . 1.3
J J J,1 J,1 J I s d Js1

Substitute inte eqn. IIIB-7 for

g.+n, i g.tn, i
Z RH’I_J__1¢_ _G_BQ_(vﬂ dn., . =0 or In —l—-lia = at+ic, (V)
" n, . ] 3,1 nj i ]

] Js1 >
whose antilog is eqn. TIIB-B4
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au - dwt
rev

ds =
T

Exercise BS. Differentiate ean. IIIB-B6 at fixed N and simplify to obtain the Gibbs equa-
tion. (This development is sufficiently similar to Exmp. B5 and it can be used as a guide
and no solution is given.}

Ans. B3. In preparation for substitution we rearrange eqmn. ITI-B4

BE BE a+Be. (V)
n, n, 3
j,mp _ 1 . 1 ¢ —LmP e _ 1
g, atBe , (V) ’ gj atBe, (V) -a—Be , (V)
. e I 4 e 4 -1 1-e J
[8.+m. o -a-8e, (V
So Iin \--L—J-’—) = in [l—-e J
g.
J
z a+st(V) g_+n§Em
= - =a + v
Then T e 1 S0 in 5E o BEj( }
n, n,
J.mp J,mp
BE . —a=Be (V)
Since S8 =~k ) g, in [}—e } +k § oo,  [otBe (V)]
eq i ] 3 J,1 J

This is recognized as eqn. IIIB-B6 with g = 1/kT and Z nj i N, Z nj isj(V) = 1.

Ans. B4,
~a—Re, (V)
- .BE : j
as . g. e 3 e, (V) 5T
( T ) -3 UZ(E;?) +Nk(23) -k Lk +(a§) - (au)
U Ju,v T2\ g, v N,V [l_e“ i 1] N,v kT N,V

B
-

!
"
M=
)

%

&l

T Lo T E‘m) (BEJN . (Nk'k ! “??mn) (%}N,V

]




