UNIT IIIA

EQUILIBRIUM— A Microscopic Understanding

The distributions of the microscopic particles among the allowed energy levels, macrostate
distributions, provide the basis for understanding equilibrium. This unit develops proce-
dures for determination of these distributions, their respective probabilities, and prop-

erties in small systems composed of each of three particle types. From these results, con-
clusions are drawn about equilibrium in small and, by extrapolation, large, "real" systems.
It is found that a group of very similar high probability macrostates dominates the prob-

ability and properties of isolated systems after long times. Further, no matter the state
in which an isolated system resides, it will, through particle collisions, attain an equi-

librium group macrostate after a short time and will henceforward remain in equilibrium.

Objectives
To complete this unit the student must demonstrate that he/she can:

1. Define and distinguish (employing degeneracy) between an energy level and an
energy state.

2. Determine macrostate distributions in small systems.

3. Describe the significance of, and the circumstances for which one is justified
in making, the independent particle assumption.

4. Choose (and justify) the statistics applicable to a given physical system.
5. Distinguish between a microstate and a macrostate.

6. Choose and employ the counting formula to compute the number of microstates in
a macrostate. Determine the probability of a macrostate.

7. Calculate an example property for a microstate, macrostate, and/or system.

B. Describe the extrapolation of small system results to large systems in terms of
the properties and probabilities of the most probable macrostate, equilibrium group
macrostates, and nonenuilibrium macrostates.

9. Discuss equilibrium in isolated systems and the processes that lead to equilib-
rium.
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UNIT ITIA

EQUILIBRIUM —A Microscopic Understanding

Equilibrium, the condition attained by every isolated system, is a state for which all
fundamentally intensive properties are spatially uniform and temporally constant. From

a macroscopic perspective, we observe that isolated systems attain equilibrium but we can-
not provide a fundamental explanation of how or why. With a microscopic approach, i,e.,

a study of the behavior of the system's particles, we can examine both the condition of
equilibrium and explain the spontaneous processes that drive isolated systems toward equi-
librium. In addition, microscopic arnalysis provides a means of calculating properties
from knowledge of the energy levels accessible to particles of the system. In many in-
stances these predicted properties are more accurate, less expensive to obtain, and much
more easily extrapolated over wide ranges of conditions fhan properties obtained by macro-
scopic measurement. Equally significant, microscoepic models give insight into why a par-

ticular substance exhibits its characteristic macroscopic properties.

I. THE BEHAVIOR OF INDIVIDUAL PARTICLES

Although real systems are invariably composed of large numbers of particles, we
choose not to begin our study with such large groups. Rather we will study single par-
ticles, then small groups, and finally we will statistically extrapolate cur findings to

real systems. Our first task is to select a particle.
A, The Particle

The term particle is used to mean seme part, component, gubdivision, entity, etc.,
the concept of which Facilitates the understanding of the nature of matter. Depending
on the guestions that a study seeks to answer, the system particles might be stars,
planets, billiard balls, raindrops, molecules, atoms, ions, electromns, photons, mesons,
and so on. Thermodynamics defines the particle to be the largest system subdivision, the
knowledge of whose individual behavior is sufficient to predict the statistical cverall
behavior of the group, i.e., the system's thermodynamic properties.

Example 1. As we have stated, the choice of a system particle depends upon the system

definition and the question(s) to be answered. Suppose the system is the sixteen balls
of a game of pool. (a) What is a suitable cheice of particle definition for the player?
The manufacturer of the balls must design a process that transforms molten plastic into

a hard spherical ball. The rate at which the ball is cooled must be controlled to pre-
vent distortion. (b) What is a suitable choice of particle definiton for the designer?

{a) To the player, the particle is obvious. To make a shot he must know in.what
manner, in what direction, and how hard to hit the cue ball. His shetr will involve
energy interactions between the balls and its dissipation via frictional processes.
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2 EQUILIBRIUM —A Micrescopic Understanding

{b). The designer must account for the rate of change in the internal energy of the
balls. 1In sclids, this results primarily from changes in amplitude of wvibration of
the molecules about their fixed positions within the crystal. Since the engineer
must obtain information concerning these motions, he chooses the molecules as the
particles.

Notice the player is unconcerned about the finer detail of the internal structure of the

balls. The designer is similarly unconcerned about the finer detail of the structure of

the molecule. Each has chosen the largest particle consistent with the question to which
he sought an answer.

A further difference between the perspective of the plaver and the designer is the detail
of their study of the chosen particles. The pool plaver endeavors to understand the de-
tails of the motion of each ball on every shot —deterministic mechanics. The designer, om
the other hand, is not interested in the detailed behavior of individual molecules. He
seeks a general knowledge of the collective behavior of the group, or of the typical be-
havior of the individual.,! This latter perspective is the method of Statistical Mechanics.

In Exmp. 1 it was possible to select a single type of particle (the balls, the mole-
cules). In many cases it is necessary to consider more than one distinct particle type.
In the study of gases at moderate temperatures, for example, we may select the molecule as
the particle without ignoring the vibration of the atoms within the molecule, or excitation
of the electrons; these phencmena are treated as part of the molecular model. As the tem-
perature is increased, we will find that atoms are separated from the molecule (dissocia-
tion) and electrons from their aroms (ionization), Since these phenomerna divide the mole-
cule into its separate components, we can no longer study these events using the molecule
as the particle of our study. We wmust now choose the separate species, that is, the elec-
trons and the ions, as the distinct particles of our study.

Exercise 1. The resistivity of electrical conductors is a primary consideration ian the

. i . . - - . . . -
design of transmission lines. What is a suitable choice of particle(s) to study material
resistance t¢ electrical current?

B. Quantum Mechanics

Engineering students are trained in applications of dynamics. Application is pri-
marily to macroscopic objects, whose speeds are much less than that of light and whose total
energies are much greater than those of Planckian quanta. Therefore, neither relacivistic nor
quantum effects need to be included and only the special case of the Newtonian limit is
treated, i.e., Classical Mechanics. The thermodynamic properties oi systems arise from
the dynamic behavior of "very small" particles. The energy of these particles is not, in
general, much greater than the Planckian quanta. Therefore, it is usually not possible to

implement statistical mechanics to obtain properties without the more accurate methods of

1Indeed, if the detailed individual behavior were known, the amount of data would be
$o staggering that it could only be sampled statistically.



THE BEHAVIOQR OF INDIVIDUAL. PARTICLES 3

quantum mechanics.? The major distinction between quantum mechanics and classical mechan-
ics is that quantum mechanics hypothesizes that energy changes of systems occur in dis-

crete rather thanm continuous amounts. The concept of discrete energy levels can be estab-
lished by investigating the time-independent Schroedinger equation and the implicazeions of

its seclution.

Note to the Student. The feollowing paraaraphs introduce some concepte of quantum mecharn-
ios that are used in statistical thermodynamics. The Schroedinger equation and iis solu-
tion ave .presented for a simple yet realisiic and important case. The formulation of the
chroedtnner equation and the technlques of 1ts solution are not objectives of this wnit.
The Lmvlzcattons of the solution, i.e., that it predicts discrete energy ﬂagnzuudes for
par+tcles and provides a means of calculating these energies, are of paramount importance.
Study this material to be convinced that these comelusions are correct. he e*amples and
erercises are intended to reinforce concepts. The post unit exam dees Egi_con ain prob-
lems similar o the nwnerical exercises included in this section.

The time-independent Schroedinger equation is a second-order partial differential
equation which in cartesian coordinates has the form

h? (32 32 82) Y1 B ( )y =0
——— e o e e — » ¥ + [e - ViX,¥Y, bix,y,2) =
Srim® lon? T 3y? | 322 (x,¥,2) + [ (%,¥,2)] d(x,¥

where h is Planck's constant {(h = 6.625* 10-27 erg-s particle)}, m* is the mass of the
particle, ¢ is the energy of the particle, and V(x,y,z) is the potential in the domain of
the particle at point (%,y,z}. The dependent variable, ${x,v,z), is the particle's wave

Ffunction. 1t is related to the particle's pesition probability by
P(x,y,2) = |o(x,y,2)|* (I11A-1)

The pasition probability for a particle, is the probability that its center of mass will
be at the position (x,y,z).3

As an example solution of the Schroedinger equaticn, we solve the case of a

. . : 4 .
point particle in a field-free rectangular box of dimension L -Ly-Lz. A field-free space

is one for which the potential fumction, V(x,y,z}, 1is zero. Particles in such spaces are

called free purticles. The Schroedinger equation for this system is

*
520 (x,v,2) + 3% (x,v,2) " Bzw(x,y,Z) étLj&J;
%2 ay? 3z2

p(x,y,2) = {IITA=2a)

Though the Newtonian limit is not applicable in general, we will find that each par-
ticle model has a characteristic temperature above which the Newtonian approximation is
adequate (ITIIC).

3Predicting particle position in time regquires the time-dependent form of the
Schroedinger equation.

4The point particle implies vanishing size.



4 EQUILIBRIUM —A Microscopic Understanding

To solve this equation for y{x,y,z) we must specify six boundary conditions.5 These con-
ditions result from the reasering that as x approaches 0 or Lx (or as y and z approach 0
or Ly and Lz) the position prebability must vanish since the particle camnot leave the box.
Noticing that whenever the position probability is zero so also is the wave function (eqn.

IITA-1), the boundary conditions for our example are

v(0,y,2) =0 v(x,0,z) =0 ${x,y,0) =0
(IIIA~2b)
w(Lx,y,z) =0 w(x,Ly,z) =0 w(x,y,Lz) =0
A solution of eqns. IIIA-2 is presented in Ref. 5, pgs. 127-130., 1t yields a family of
solutions
Yy maXi¥e2) = A sin (25':) sin {“‘T:fi) sin (—%TL;-) (ITIA-3)

corresponding to all nenzero positive integer values of the guantum nwmbers, 2,m,n=1,2,3,
«+., and all combinations.ﬁ'? The folleowing problems verify the validity of rhis solution
by assuring that it satisfies both the boundary conditions (Exer. 2) and the equation
(Exmp. 2). *

Exercise 2. Show that the wave functions, Y m.n(¥¥:2}, (eqn. TITA-3), satisfy the bound-
ary conditions, {eqns. IIIA-2b), provided 2, ﬁ,’and n are integers.

Example 2. Determine if the proposed solution, eqn. ITIA-3, satisfies the Schroedinger
equation as specialized for the example of a point particle in a field-free box. Deter-
mine the restrictions imposed on the energy by the form of the solution.

To establish the conditions for which Y2 m.ntX.y,2z) satisfies the Schroedinger equation

. L . 1 i
we need only substitute the propesed wave functions into the equation and perform the in-
dicated partial differentiations. Thus for the first term

LoTAY (x,y,2)
3 L,m,n _ 3|5 . (lnxJ . (mnz) . (933)
Bx [ % } 3x [Bx A sin ‘T Jj o L, SEUAT

z

¥ Two boundary conditions are required for each of the second-order derivatives.

5The quantity A is an integration comstant. Tts values are determined through the
requirement that the integral of the squared wave function over the dimensions of rhe box
must equal one, i,e., the probability of the particle being in the box is cone. The result
. - L7
is A = (8/L L L_)3

X'y 'z .

“Note that negative values of %,m,n are not included. No new solutions are obtained
with negatives since sin (-Rnx/Lx) = —-gin (lnx/Lx) and the minus is taken by A. Also
neither 2,m, nor n are zero since this makes the probability zero for all X,¥,z, which
imrlies that the particle is not in the box.

-

wns. 1. In determining electrical resistivity one must consider both the charge carriers
and the scattering centers which interfere with their motion through the media. In this
case, the analysis includes the free zlectrons and the vibrating lattice points or mole-

guies of the solid.
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Performing the ipner differentiation we obtain
2 A Im cos Arx si (Eﬂi sin Eli-
3x L L R L
x y z

Differentiating again,

2 2 2
2 Wg,m,n(x,Y.Z) .. EE) sin (an) cin [mﬂv) X nwz) - . &1\ " ( )
3%2 L L I L) “e,m,n-0Y0F
X X g z X

Similarly,
2 2 2 : 2
d w?,’m_Ln(x,y’Z) = - E.F..) w (X Z) i Ib ,m,n(:{,y’z) — (E.F‘_T ll) ( )

3y2 L) "o ¥ 122 L) Yo ma "

Finally, adding these second partial derivatives as they appear in eqn. IITA-23,

2 2 2
- |f&z mm nm 87%m* B
{ |:(L ) M (L ) *+ (L )} + h? E}wg)m’n(X’Y,Z) =0
X v z

Since this product equals zero, either the quantity within brackets equals zero or

(x,v,2) equals zero. The latter possibility is ignored since it implies thac P(x,y,z)
Tw(x,y,z)|2equals zero for all x,y, and z. This is to say that the probability that the
particle at a point is zeroe for all points within the box. The alternative is that the
bracketed terms equal zero. This gives an expression for the allowed values of the energy.
See eqn. [ITIA-4 below.

We have verified that the assumed wave function, eqn. IIIA-3, is a valid solution for
the free particle in a box subject to the specified restrictioms on the energy. This func-
tion can be used to predict the position probability of the particle in terms of its en-
ergy. Neither the wave function nor the position probability is necessary for the statis-
tical determination of the thermodynamic properties. Yet some students may find a more
thorough investigation of the character of eqn. IITA-3, especially as it relates to our
macroscopic experience, helpful in understanding its meaning. Such an elaboration is pre-
sented in Appendix TITA-A.

In Exmp. 2 we found that the free particle in a box could acquire only certain dis-

crete energy magnitudes,
5 2 2 2 .
h 2 m n
= —— — —_— + —_— A
Ez,m,n 8m* [(L J +(L ) (L J } (I1IA-4)
X y z

where f£,m,n=1,2,3,,.., and all possible combinations. The possible energies of the par-

ticle, ¢, are written as £, . m,n to emphasize that they are discrete, or quantized. We call
Loaltly

the values ascribed to %2,m, and n for any specific e the quantwn numbers of that en-

£,m,n
ergy state. Furthermore, the specified energy states Bl pin
b ’

for the particle and the corresponding wi o n(x,y,z) are tl» only possible wave functions.
* ’

are the only possible states

These energy states and wave functions are called the allcwed energies and wave functions.
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Example 3. TFlectrical conduction in metals is dependent on the motion and energy ex-
change processes of its free electrons. Free electrons can be modeled as point particles
in a field free box. The box in this case is the conducting element. The energy levels
in a ecircular wire can be approximated as

h? (32 + @2  n?)
eV % Y‘““Y‘"‘+ _?J
Sm_ | D L

e
where D is the diameter and L the length of the wire. Scattering processes that change
the radial component of the velocity will necessarily invelve a change in the quantum num-
bers % and/or m. <Calculate the minimum change in the electroun energy for such a process
and the corresponding discrete change in the electron's translational velocity for a 10-
micron diameter wire.

The minimum discrete energy change would correspond to one integer in the magnitude of the
% and m quantum numbers squared, (22 + mZ)Z - (2?2 + m2)1 =1
h? | (6.625)% *10 0" arg?g2

Ae = X
2 -
2R 8w D 8- (9.109) - 10 28

— = 6.023 - 107" erg
g - 10 cm?

The relationship to the velocity is in terms of the kinetic energy of the electron
= m*ri2
e = me(V/2); so

L

. 2%€nin) _ _h 6.625- 10727 erg-s

AV in = * - x 3 58 " 3,637 cm/s
e Dm,  2.10 7 em- 9.109 - 10 °° g

Thus, though the discrete energy change is numerically small we nevertheless obtain large
minimum radial velocity change. It is clear from this example that quantum mechanics is
significant in determining electrical conductivity.

Exercise 3. While discrete energy changes are significant for some microscopic particles,
they are insignificant for all macroscopic objects. Consider a billiard ball moving on a
frictioniess table, A frictionless billiard table can be modeled as a two-dimensional
field-free box. The energies of the balls in such a system can be inferred from eqn.
TIIA-4 to be

h2 22 m2
£2-dim.  gg* | L2 + L2
® Y

Ans. 2. The function, (x,¥,2), satisfies the boundary conditions at the limits of x for
all y and z. At x =0

- . i, , mry , nrz
wl’m,n(o,y,z) = A sin (L OJ sin (Ly) sin (—L )

x Z

which is zero, since sin (0) = 0. At x = Ly we have

grL
_ , X . mny , nrz
. wﬁ,m,n(Lx’y’Z) A sin ( T ) sin (Ly ) sin CEZS
x

The only nontrivial way this can equal zero is if sin (L7L,/L,) = 0. Thus ¢ must be an
integer. Similarly, the boundarv conditions for y and z are satisfied provided m and n
are integers.
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The minimum energy is determined by £ = 1, m = 1, This energy is kinetic, (1/2)m™02. In-
tuitively we expect the minimum speed of the ball to equal zero. Treat the ball as a
point particle of mass 250 g on a table of dimensions 1.2 m by 2.7 m. Calculate the min-
imum speed of the ball. Calculate the time required for the ball to move a mininum detec-
table macroscopic increment, 10~7 cm, at this speed.

Vote to the Student. IUnlike the previous szction, thorough familiarity with the meaning
of the terms defined and discussed in this section {s essential to accomplish the cbjec-
tives of thig untt.

C. Energyv States, Energy Levels, and Degeneracy

The solution of the Schroedinger equation for a particle in a field-free box resulted
in an expression for the discrete energies of the particle, egn. IIIA-4. The energy states
of the particle are dependent on the dimensions of the box (Lx,Ly,Lz). The general con-
cepts are more easily assimilated in terms of the simpler geometry of a cubic box. Withia
a cube, the discrete energy states of the particle can be written as a function of the

b}
mass of the particle and the volume of the cube.’

—___E?_ 2 2 2 = * _ 2 2 2
€0 mn gm*v2/3 X<+ m* +n<) = Ez,m,n(m »V) = B_(2%+n +n%) (IIIA-5)

To save writing the physical constant (h2/8m*V2/3) is named B_.

Every set of quantum numbers (L,m,n) identifies a distinct energy state. Since the
minimum value of each quantum number is one, the minimum energy magnitude (the first level)
that a particle can possess is3 Bo. The next higher energy level is e; =6 BD. There are
three states in this level: (1,1,23, (1,2,1) and (2,1,1). Though the energy of the states
is rhe same, they remain distinct. The behavior of particles residing in different states
is the same, they remaiq distinct. The behavior of particles residing in different states

. . 9 . . ;
of the same level is dFfferent. The number of states in a level is called its degeneracy,

8for a cubic box Ly = Ly =Ll,, L3 = v, and 1.2 = v2/3, Thus eqn IITA-4 can be sim-

plified as s . 5
(%Z*‘%;*%Z =f12~(22+m2+n2)=——21—;(22+m2+n2)
x y v

3The only energy form available to a particle within a field-free box is kinetic en-
ergy. Kinetic energy (a scalar quantity) is proportional to particle speed, i.e., the
magnitude of the particle velocity (a vector quantity). Total kinetic energy can be writ-
tern as a sum of its x,y, and z components. For each energy magnitude there may exist mere
than one quantum set, %2,m, and n. These integers prescribe how the total kinetic energy
of the state is distributed among the three coordinate directions. Since the energy of
the particle is proportional to velocity, one might ask of our solution, "What is the ve-
locity vector faor a particle in quantum state (1,1,2}?" The stationary state Schroedinger
equation cannot be used to specify this vector exactly. The vector can lie in any quad-
rant. Its z component energy will be twice its x or y component. To specify the direc-
tion of motion, we would require a solution of the complete, time-dependent equation.
However, since the particle's energy is independent of its direction of motion, we can
disregard comnsiderations of direction in our studies.
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g. Thus, the second level has a degeneracy of TABLE ITIA-1: ENERGY STATES, ENERGY
MAGNITUDES, AND LEVELS, AND ENERGY

three, g = 3. The first level has only one LEVEL DEGENERACIES FOR A PARTICLE

state, g1 = 1. This level is said to be non- WITHIN A FTIELD-FREE CUBE
degenerate. This is typical, higher energy
levels often have larger degeneracies. fuancum umbers EReTAY £y fenenerasr. Ay
Table IIIA-1 presents the states, levels, (1.7,12), (3.4,13), (3,8,11),
(5.5.12), (7,8,9), ... S1g0 " 196 B 100 * 7

and degeneracies for the first several levels and all perzutations

of a particle in a cubical box. The quantum (1,1,5), {1,510, (5,1,1) -
3,3, 14 o Big
numbers corrasponding to the states in each (1,3,4), (3,1,4), (1,4,3) ¢ =328 B _—
(3.4,1), (4,1,13, {4,3,1) 13 o 813
successive level are listed. The degeneracy (2.2.6), €2,4,2), €4,2,2) Bl = 2 3, 85 = 3
of a level is the number of possible permuta- (2.3.3. 3.2,3), (3.3.2) FiL T 2By 173
. (L,2,8), vy ons £ =28 -
tions of those quantum numbers as shown. The 10 0 F10
. (1,3,3), (3,1,3), (33,1 gy = 19 8 g, = 3
first energy level where more than one non- )
(L1,43, (L4,13, (4,1,1) ey = U1, B = 3
permuted set has the same energy is level num— [N T £, =17 g 3,
ber 1l4. The two sets of quantum numbers are (1.2,1), (13,23, (21,3 ¢ =148 g =6
(2,3.1), (3.1,1, (1.2,1} 6 ) 3
(1,1,5) and (3,3,3). The level number is de- (2,2,2) g % 12 By 2 = 1
signated as j. Thus for this level j = 14 and f1.1.3), (1.3, .11 LRy 5 ")
. (1,2,2y, (2,1,7), (2.2,1) £, =03, 8y =3
the energy, €14, equals 27 B, The following
o (1,1,2), (1,2,13, (2.1,1) o, =68, 8,3
exercise will aid in seeing the relationships (1.0 ey =3, g - 1

of the table.

Exercise 4, Several blanks have been left in Table ITIIA-1. To assure your understanding
of the relationship between the quantum numbers, energy states, energy levels, and degen-
eracy, determine the missing quantities: the quantum numbers for level seven and its de-
generacy, gy = ?7; the energy of level eight, g5 = ?; the degeneracy of level ten, gig = 7
All distinct sets of quantum numbers for level 140 are listed. Find its degeneracy,

Biup = 7

We summarize the definitions presented above.

STATE -~ (Energy State): A distinct condition of the system specified by the
quantum numbers. Each state has an energy magnitude associated with it,

z {(often abbreviated £.}.
%,m,n i

Ans. 3. The minimum energy is

(6.625+ 1073% J ¢)2 1 1 ~59
= . o = .8 . l b
min 8+ 0.250 kg Gzm? @7 me| = 18310

£

. 2e |
From which v . = T&n = 4,0-10
min o

a7
m/s.

At this rate, it would take approximately 102 vears before our displacement measuring
device could detect its motion.
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LEVEL - (Energy Level): 1In gemeral, an allowed discrete energy magnitude.
Level, when associated with the integer, j, implies an ordering of energy
magnitudes. Thus, there are (j-1) levels with discrete energy magnitudes
less than the magnitude of the jth level. The first energy level is ¢,

the second e;, ete, The notation e: represents any energy level, j = 1,2,....
Wi:h each energy level there is assdciated at least one, and frequently

many energy states, i.e., distinet sets of the numbers £,m, and a.

DEGENERACY - (The Degeneracy of an Energy Level}: The number, g, of energy

states, all of which possess equal discrete energies, i.e., the number of

states at a given level is called the degeneracy of that level. Thus, g-

for a fixed integer, j, implies the number of energy states in the jth lavel,

Thus far our introduction to quantum mechanics has been limited to systems composed
of only one particle. Since the particles we have in mind are molecules, atoms, electrons,
etc., we realize that the concepts developed must be extended to systems with more than

one, indeed, very large numbers of particles. In the following paragraphs we discuss some

of the complications that such systems present to our theory.

IT1. GROUP PARTICLE BEHAVIOR

The macroscopic properties of systems result from individual particle behaviors.
These behaviors cannot be considered individually since the particles experience contin-
uous interactions (collisions) among themselves. 1In this section, we explain why it is
that even while the distribution of particles among states and levels chdnges continually
under the agitation of collisions {(i.e., as the particles exchange energies), their macro-
scopic properties in equilibrium remain constant. To reconcile constant properties with
incessantly changing particle distributions, we must study the possible and probable dis-
tributions of the particles within the available energy states and levels under prescribed

system ceonditions.

Al Macrostate Distributions

We will consider the properties of systems with certain fixed conditions ar con-
straints. BEasically, these conditions ensure that the systems do not exchange mass or

energy with the surroundings, i.e., the systems are isolated. 1In terms of the particles

of a system, isolation requires that:

(1) the space occupied by the particles be permanently fixed in shape and
size —the volume, V, of the system is coanstant;

(ii) the system <contains a fixed -group of particles {(number and identity).
For convenience we wil' consider only systems with a single type of
particle, N in number.

{1ii) there are no energy transfers to these particles from sources outside of

the system. Therefore, the internmal energy, U, of the system is constant. !0

ye are considering an isolated system in a fixed stationary position. Hence, the
kinetic and potential energy terms need not be included.
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If a single particle were constrained as an isolated system, it could only be in a
single energy level, U = Ej' The only spontanecus processas that could occur to the par-
ticle would be changes among the gj states of the jth level. This is not the case in iso-
lated systems of more than one particle. In them we recognize the possibility (indeed
probability) that there can be more than one distribution of the N particles among the
levels which will satisfy the constraint on total system emergy. Each of these distribu~
tions describes a net condition of the microscopic particles within the macroscopic sys-
tem. Fach allowed distribution is called a maerostate of the system. The macrostates are
differentiated from one another by the subscript i. Thus n.,i is that distinet distribu-

. . . . b ;
tion of particles among j levels designated as the i macrostate. The coustraints on

allowed n, , are
3.1

J
U= ] a .c N=] n o (111A-6a,b)
j=l J! J j=1 J’
Hence, a macrostate is defined as a distribution of particles among the levels that sat-
isfies the constraint equatioms, IIIA-6. It is specified by a set of numbers (nl L
k] 3
,). We distinguish macrostates by Roman numerals (I, II, III,...,1i,

T, .peeeslt, .a-
3,1; 71,10 J, 1 .
...I%). XNot only can the system exist in any of I~ aliowed macrostate distributions, but

e.,Dl

it changes from one allowed macrostate to another very frequently as the particles inter-
act (collide) with one another. Collisions between particles permit exchanges of energy
and effect alterations in particle distribution.

At any instant properties are determined by the macrostate present. For real sys-
tems, the number of particles 1s very large and macrostates change with such extreme rapid-
ity that during a finite time the system will visit a great many of its macrostates. The
observable, time hverage properties depend upon the sequence and duration of macrostates
present during observation. Our approach to the prediction of properties must consider
these macrostates and their probabilities. First we must determine the macreostate distri-
butions by solving eqns. [IIA-6. This will depend upon rules governing their solution.

In Section I we solved the Schroedinger equation for a single-point particle in a
field-free box. We established the energy states (and levels) available to it, "Now we
want to treat a system of many particles. How does the solution of the Schroedinger equa-
tion change when it is solved for a few and then many particles simultaneously? Are the
energy state and level magnitudes altered? The answer to this question depends upon the

type of particles present.

Ans. 4. Quantum numbers of e are (2,2,3), (2,3,2) and {3,2,2); g7 = 3; eg = 18 Bo’
B1o = 6, 8140 = 27.
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Dependent Particles. Continuing our consideration of the particle in a box, the
energy states accessible to the single—point particle are those of translation.
This model can provide a basis for the consideration of gaseous behavior. But
when more than one molecule is present in the box, it is no longer fiz2ld free.

A potential field acts between the particles as a result of their dipole inter-
actions (see Unit ICS). As a result, the potential, V, appearing in the Schroe-
dinger equation is no longer zero. This potential is, in fact, dependent on the
position of all of the molecules present in the box, V= Vi{xy,---V(xX1, ¥1» 21, ¥o,
Zzye+-3 Xy» Yy, 2y). In these instances the Schroedinger equation must be solved
simultaneously for the N particles and the allowed energies will not be the same
as those for the original single particle, aj(one) # Ej(many).

One can imagine that the simultaneous solution of the Schroedinger equation for a
system of particles is not a simple matter. The usual procedure is to account for the
effect of the dependence of particles by successively treating cases of increasing numbers
of particles and examining the changes in behavior as each more accurate model is solved.
Physical situations for which the first-order {single-particle), solution for the energy

states gives accurate representations of properties of actual systems are not uncommon.

Independent Particles. Whenever the energy states and levels accessible to the
many particles of a real system are the same as those for a single particle under
the same conditions, =;(one) = £;{many), that system is composed of independent
particles. This requifes that tﬂe potential acting on each particle is, at mest,
dependent on its position, V{x,y,z). For example, the molecules of a gas can be
treated as independent particles whenever the total translational kinetic energy
of the collection dominates the total potential energy associated with the fields
between the particles. These conditions prevail in gaseous systems when the pres-
sure is low, so that the distance between particles is comparatively large, or
when the temperature is high, so that the average molecular kinetic energy is
high.!! Lattice vibrations of atoms in a solid can also be modeled as indepen-
dent (Unit IIID). This approximation is walid not because the potential energy
between the atoms is negligible but because the potential can be written in terms
of a constant "mean" position of the neighboring atoms. Thus the potential is
independent of the motions of the neighbors.

The independent particle approximation accurately predicts the properties of many
important physical systems. It will allow us to apply statistical principles to groups
of particles and it will not impair our subsequent understanding of equilibrium or the
second law of thermodynamics. We will continue this assumption throughout Units ITI.

As defined, the macrostates of a given isolated system constitute all possible solu-
tions of eqns. IIIA-6. Thus to determine a macrostate one must specify the internal en-
ergy, U, the number of particles, N, and the energy levels for the system (€1, €2,..-,
Ej,a.-.EJ). One of the great frustrations of the science of statistical thermodynamics
is that no technique to determine the full set of macrostate distributions has been found

except trial and efror, Fortunately, through our development, we will find a characteristic

Nye will see in Unit IIIC that a gaseous system of independent particles is a per-
fect gas (see also Unit ID).
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pattern that relates macrostate distributions to system properties. Once this pattern is

understocd, we will be able to avoid the tedium of trial-and-error procedures.

Since macrostate distributions cannot be found analytically, our examination of pro-
cedure and results, and the discovery of trends must be accomplished in terms ofexamples}2
For consistency and simplicity, we will use the energy levels and degeneracies developed
for the particle in a cubic box. The energy levels of this system were written in terms
of the constant, BO {(EhZ/(Sm*sza)}, and the quantum numbers &,m, and o = 1,2,3,..., and

all possible combinations, as

= - 2 2 2 _
Ej €Z,m,n BO(Q + m“ + n<) (IITA-5)

or specifically sj/B0 = 3,6,9,11,12,14,17,18,19,21,22,24,... {(see Table IITA-1). 1In this
example the intermal energy of the system must be an integral multiple of Bo, U=1 Bo'
And, since the minimum energy of any single particle is 3 Bo, the minimum total energy is
Umin = 3 NBO. Thus L 2 3 N, Subject to these constraints, we propose to draw physical
conclusions by considering successively larger numbers of point particles isolated in a
cubic box. As a smallest example consider the following.

Example 4. Determine the macrostate distributions of a system of three particles with a
total energy of 27 B0 isclated within a cubic box.

This problem will require trial and error to determine all distinct sets of n, , that sat-
isfy the constraints, eqns. I[ITA-6. Jsd

N=23= z n. . and U=27B8 = Z n, L€

j=l _J! j=l J! J
To begin, we can divide the 27 B, energy evenly among the three particles. Thus each par-
ticle would have % B, and Table IITA-1 shows this to be acceptable. Thus macrostate [ is
= 3’ = )

=n F eee =

] .1 T 5,1
Check: 0:3 B +06B +3-9B +0-118 +0-12 B
o] Q o o Q

I. n = n = 0,

1,1 2,1 a1 AP

27 B
o

We have established a first macrostate and that the levels above or below level 3 can pos-
sess at most two particles for any macrostate. TIf level four has two particles their en-
ergy is 22 B and the third particle must have 5 B . This is not possible; 5 8 1is not an
allowed energy. Trying two particles in level five we find that the third part?cle in
level one satisfies the constraint equations.

=1, =n 2, n = ... =40

II. 0,

M, 11 Mo,11 T M3, T M4,11 T Bs, 11
Check: 13 B +06B + ...+ 212 B + ... =27 B

o o o o

Two particles cannot occupy levels above level five. Now we try two particles in level

twa. This requires the third to have 15 B_ which is not allowed. However, two particles
in level one and one in level ten constitute a macrostate.

12 hereas examples are generally intended to be supplements to the text, in Unit ITIA
important concepts are established by means of example.
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7,111 mp,11I T “3,11r 0 0t T %,rrr T 9% Mo,111
Check: 2°3 B + 06 B + ... + 1°21 3 = 27 B
o Q ]

IIT. = 2 =1

o]

This macrostate has bracketed the potentially occupied levels. No higher levels can be
occupied in this system. Also, that comstitutes all the macrostates with tweo particles in
the same state.

An additional macrostate is found by reexamining macrostate I. If one particle's energy
is reduced by 3 Bo and one increased 3 Bo, we have macrostate IV.

=n = ,.. =20

IV. n = n 6,1V

2,1v - M3,1v T Ps,1v T PLIv T M1y
Check: 0+ 1:6B + 1-9B +0+ 112 B + 0 = 27 B
o Q [} o

1; n

Similarly consider macrostate III if one of the particles in the lowest energy is increased
3 B0 and the other is reduced to level 8, we have macrostate V.

v T Mv T 0

V. = 1;

g v T3 v T By T s Ty TRy T

Because we have used a patterned method of looking, it is clear that no others exist.
These are the five macrostates of our example.

The trial-and-error determination of macrostates for 3 particles is relatively easy
because our selection of system energy limited the potentially occupied levels to only the
lowest ten of the infinite array. In the course of the unit we will consider the charac-
teristics of systems with successively larger numbers of partricles and eventually extrap-
olate to draw conclusions about real systems. In the process, to maintain as much common-
ality as possible throughout the systems of our study, we choose to hold the average en=-
ergy per particle, E, fixed at a constant value, E =U/N =09 Bo' Therefore as we proceed
to larger systems the total energy will increase in proportion. What about the number of
levels accessible to the system?

In the 3 particle example the 10th was the highest level occupied. For a 30 particle
example the total energy is 270 BO. This means that the highest level occupied would be

180 BO (nl L= 28, =1, = 1). Thus the number of levels accessible

“129 7 %21 P129,1
to particles increases very rapidly with increased total energy (or system size). This in

turn, vastly increases the number of macrostates. A 4 particle system would have 14 pos-

sible energy levels and 14 macrostates. Since ENERGY  ENERGY ENERGY STATES LEveL

. . . . LEVELS MAGNITUDES DEGENERACIES
our principal purpose is to investigate Increased

- . r . _ 5 : = 1
numbers of particles we will facilitate the pro : o ;# — o
cess by arbitrarily limiting our systems to the 3 T %1 &f 1,73
lowest five levels, Fig. [IIA-1. In the figure, 2 T 3d
states and levels of increased energy are placed - 9!

higher on the page in analogy with greater Fig. ITIA-1: A Schematic Representation

energy. The existence of more than one energy of the Energy States of a 5-Energy
Level System
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state at a level is represented by several cups at the level. Each cup represents astate,

they are subscripted with their quantum numbers to indicate that they are distinct.

Exercise 5. Determine the macrostates of a system of 3 particles, energy 27 E_, when the

levels are limited to 3 Bo’ 6 Bo’ 9 Bo’ 11 Bo’ and 12 Bo’ as shown in Fig., ITTA-1.

Exercise 6. Given a system with 4 par- TABLE I1IA-2: THE MACRCSTATES OF A 4 PARTICLE,

ticles and 36 B_ energy to which omnly 36 BO ENERGY SYSTEM WITH 5 ENERGY LEVELS
the five lowest energy levels of Table
IITA-1 are accessible, write the con- Macrostate  § -1 2 3 4 5 f " § a, €
straint equations and determine the A L
macrostate distributions. (Answers in 1 LI =0 1 z 0 1 s 168,
Table IIIA-2.} 1 Mo tb0 o 3 o " 168
LIT nj.III ) aQ 4 q a 4 168
B. Microstates v v T2 o o 2 s 143
In the three and four particle ex- v Sy Tt oo ? “ 388,
Ej - ]!° ﬁﬂo 930 1.15c| 12&0

amples we found several solutions to

the constraint equations, IIIA-6, i.e.,
several macrostates. Since each macrostate constitutes a distinct arrangement of the par-
ticles among the levels, we could expect the different macrostates to display different
characteristics or properties., As collisions occur and macrostates change very rapidly,
time average properties will be associated with macrostate properties in proportion to
the probability of existence of each macrostate. Therefore we must be able to predict the
probability of allowed macrostates.

A macrostate description specifies only the distribution of particles among levels.
But most levels contain several states (those with gj > 2). Therefore, most macrostates
encompass several arrangements of particles among the states in the degenerate levels.
Since ‘these arrangements are elements of a macrostate set, they are called microstaies of
that macrestate. A micrgstate is a unigue aqrrangement of particles among the energy
states which satisfies the system constraints (eqns., ITIA-6). While macrostate determi-
nation is independent of particle characterigstics (for given N, T, and ej), microstate
counting procedures vary with the type of particle. We will first study distinguishable

particles.

Distinguishable vs. Indistinguishable Particles. One cannot distinguish between
like microscopic particles. One nitrogen atom is the same as any other nitrogen
atom.!? Nor can we tell one copper atom from another. Microscopic particles
appear identical. However, within a crystal of copper we can distinguish the
atoms by virtue of their fixed positions. This is the distinguishability of par-
ticles., The like particles constituting the lattice points of solids are dis-

134e exclude other isotopes.
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i tinguishable since their positions are fixed. The statistics obeyed by distin-
guitshable particles is called MAXWELI-BOLTZIMANN (M-B) STATISTICS and we will call
a distinguishakle particle a Boltzom.l"

To determine the probabilicty of 4 macrostate relative to other macrostates, we must
determine the nuﬁber of microstates of each macrostate. In systems of distinguishable
particles a microstate description contains the detail of not only which states of a de-
generate level are occupied but also, precisely which particles occupy each state.

Boltzon macrostate probabilities. Any number of Boltzons can occupy a particular

energy state so long as the arrangement is consistent with the system constraints, eqms.
I11A~6. To illustrate the concept of Boltzon microstates consider the &4 particle system
of Exer. I[IIA-6, whose macrostate distributions are listed in Table IIIA-2. What are the
allowed microstates if the 4 particles are distinguishable Boltzons, designated A, B, C

and D? (See Exmp. 5.)

; Example 5. <Consider a system of 4 Boltzons occupying the 5 levels of Fig. L[ITA-1 with a
* total energy of 36 B,. Determine how many microstates exist in macrostate V, Table IIIA-2,

The first arrangement of macrostate V is shown on the schematic distributinn -
of states and levels at the right. Each distinguishable particle is desig- N
nated as to which state it occupies. This is one microstate.

H{[&
S

. Other microstates are represented by simply listing all LD 28, At \BO/
possible rearrangements among the occupied energy states o B B S
(including the original in the upper-left-hand cormer). 2 S ey

oy
Each of the microstates generated by particle interchange Egég;g N - R W N
has its level three particle in its (1,2,2) (left) energy 2

state. Since this particle could just as well occupy the 8BS NI B2, -0
(2,1,2) (center) or (2,2,1) {right} energy state of the ot stasteniisshaviuiite whavtu!
third level, each above distribution is one of three pos- '™ —=o— —z— —=—
sibilities. Thus the total number of microstates of

macrostate V equals 36, We designate the numbers of A Al 4R

microstates in a macreostate as Wi where 1 = I,I1,..., etc. i ol ity
This example has determined that Wy = 36.

|

| In Exmp. 5 we showed that there are 36 microstates in Macrostate V of Table IIIA-Z.
| We also found that it is tedious to determine the microstates of a macrostate by listing
them. The principles involved are those of combinations and permutations. An equation

. . _th . R
that determines the number of microstates for the i macrostate of N Boltzons distributed

as nj ; among J levels with degeneracies gj is (Ref. 5, Sects. 2.6 and 3.2)
5 g i M,ny 2,0 f1,1
it 81 g2 83
. WO sNETY = [ [ , (111A-7a)
i iyt f1,i° 2,1i° nr,i°

1"Two indistinguishable particle statistics are considered below.
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Example 6. Macrostate V, Table ITTA-2 was shown to have 36 microstates. The particle
distribution is: ny oy < 1, oy < 0, N3y = 1, oLy " 0 and ng g = 2. The level degener-

acies are gy = 1, g2 = g3 = 84 = 3 and g5 = 1. Verify that eqn. ITIA~7a yields 36 micro-
states for this macrostate.

ool EEE)E] o BERHE] -

Thus once the maecrostate distributions have been determined (by trial and error)}, re-

peated application of eqn. IIIA-7 permits the determination of all I* values of Wi with

. . - . * .
relative ease. The total number of microstates accessible in all I macrostates is

I*

W= 7 W, (IITA-8)
. 1
i=1

The evaluation of Wi and W permit the evaluation of the required macrostate probabilities
on the basis of a single underlying assumption.

THE EQUAL PROBABILITY AXIOM: ALL MICROSTATES ACCESSIBLE TO A SYSTEM UNDER GIVEN
CONDITIONS ARE EQUALLY PROBABLE.

This assumption leads us directly to an understanding of the concept of equilibrium
and ultimately to the formulation of the second law of thermedynamics (Unit ITIB). Thus
the assumption is equivalent to a statement (but not a derivation) of the second law.
Though the assumption seems credible, it is properly viewed as a postulate whose validity
rests on the correspondence between predicted bebavior and physical observations.

With the assumption that all microstates are equally probable, we can write the

probability of any macrostate, p;, as
pi =0 (IITA-9)
This definition facilitates the determination of which macrostates will appear with great-

est frequency in the system.

Exercise 7. Table IIIA-2 presents the 5 macrostate distributicns for 4 particles in the
5 levels of Fig. I1IA-1 with a total energy of 36 B,. If the particles are Boltzons,
determine Wi for each of the 5 macrostates (W, = 36, see Exmps. 5 and 6), as well as che
total number of microstates, W, and the probability of each macrostate, pi- The answers
to this exercise are compiled in Table ITIA-3. -

Exer. 7 concludes the development that results in the determination of Boltzon macrostate

probabilities. The felloving section extends these methods to indistinguishable particles.

Ans. 5. I. = 3; II.

31 M1 T
all unlisted levels equal zero,
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Indistinguishable particle macrostate probabilities. We found that most of the micro-

states of Maxwell-Boltzmanm systems are simply interchanges of position of the distinguish-
able‘particles {A, B, ... ) among the energy states. For a system of indistinguishable
particles (a liquid or gas) particle position swapping does not result in new distinct
distributions. Therefore, we expect fewer microstates for indistinguishable systems. In
our previous consideration of distinguishable particles (Boltzons), we placed ne limit on
the number of particles that could occupy a state. There are two classifications of in-
distinguishable particles. One shares this characteristic with Boltzons. The other is

restricted to at most one particle per state.

The Pauli Exclusion Principle and its Significance. Indistinguishable particles
are classed as symmetric or antisymmetric depending upon whether they contain an
even or an odd number of subatomic components (that is, the total number of elec—
trons, protomns, and neutrons). The necessity for this distinction arises from
the experimental fact that particles with an even number of subatonic components
(symmetric particles) behave differently from those with an odd number of sub-
atomic components (antisymmetric particles))® These differences can be accounted
for by the postulate rhat each energy state of systems of antisymmetric particles
is reserved for at most one particle at any instant, whereas any number of sym-
metric particles ean occupy the same energy state simultaneously. This postulate
is called the Pauli Exclusion Principle. It is an effect of the symmetry of the
individual particle wave functions and the manner in which they combine to giwve
the group wave function. If the individual wave functions are odd and two par—
ticles are placed in one state, the group wave function and therefore the prob-—
ability of such an arrangement, vanishes. If the individual particle wave func-
tions are even and two particles are placed in one state, the group wave function
does not vanish. To make this point more rigorously, it is necessary to study
the effect of matrix mulrtiplication of individual wave functions to obtain group

results. The interested student may wish to read Ref. 5, Sect. 5.10.

For application we require only knowledge of the additional restriction. Antisym-
metric indistinguishable particle systems can have no more than one particle per state.
Symmetric indistinguishable particle systems like distinguishable particles (Boltzons)
can have any number of particles per state. Two statistical methods have been developed
to predict the behaviors of the two classes of indistinguishable varticles. These are
BOSE-EINSTEIN STATISTICS for symmetric particles and FERMI-DIRAC STATISTICS for antisym-
metric particles. Applicarions to systems of indistinguishable particles require that we
be able to differentiate systems of symmetric particles, Bosons, from systems of antisym-
metric particles, Fermions. This differentiation is accomplished by simply counting the
number of subatomic components composing the particle, i.e., its total number of electrons,
protons, and neutrons. The procedure is the same for all particles whether they be mole-

cules, atoms, or electromagnetic and acoustical waves.

oye will subsequently find (Unit IIIC) cthat the differences vanish in each system
at its own characteristic high temperature.
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Example 7. The following are examples of classification of indistinguishable particles as
symmetric (even) or antisymmetric (odd) and the selection of an appropriate statistic.

(i} The commen isotope of helium, He“, has two electrons, two protons, and two neutrons.
Its total number of subatomic compoments is 6— even, therefore He“ particles are symmetric
particles, Bosons. The statistics applicable to He' particles is the Bose-Einstein sta-
tistics.

(ii) The rare helium isotope, He3, has one less neutron than He"; therefore its number
of substomic components is 5 which is an odd number. Conclusion: He” particles obey the
statistics of antisymmtric particles, i.e., Fermi-Dirac statistics.

The markedly different properties of these very similar gases at low temperatures are ex-—
plained and predicted by their respective statistical procedures.

{(iii} All homonuclear, diatomic gases are composed of two identical atoms. The particle
is the gas molecule.!® The atoms come in pairs, e.g., 0, No, 2tc. Thus their total num—
bers of subatomic parts are even numbers and these particles are Bosons, symmetric, They
obey Bose-Einstein statistics.

(iv) Consider a heteronuclear diatomic gas. The hydrogen of hydrogen chloride, HC1,
contributes 1 proton and 1 electron. The normal chlorine atom has 17 + 17 + 18. The
total for HCl, 54, is even. Hydrogen chioride particles are symmetric —Bose-Einstein
Statistics. Other heteronuclear diatomic gases may be antisymmetric. .

Symmetry characteristics of particles are of practical significance to the studies of he-
lium, hydrogen, electrons,and other particles as light or lighter than these, at practical

temperatures and in principle to heavier particles at unattainably low temperatures.

Exercise 8. Classify each of the following particles as Bosons or Fermions. (a) diatomic

hydrogen, H,; (b) the hydrogen atom, H; (c) the hydrogen iom, H*; (d) an electron, e”;
(e) a photon; (f) a phonon {photon and phonon are the names given to the massless par-
ticles of electromagnetic and acoustic radiation, respectively).

We are now able to classify indistinguishable particles as Bosons or Fermions. Fur-
ther, we recognize that neither the counting procedures nor the combinatorial relation-
ships illustrated for Boltzons (eqn. IITA-7a) are applicable to these particles. Formulas
for counting microstates of macrostates of indistinguishable particle systems have been

derived (Ref, 5, Sect. 3.2). For Bosons and Fermions, respectively, they are

J(g. +n, . - 1) J g.!
BE =‘ﬁ i i,1 WD =1 1 (IITA-7b,7c)
i ;oo {g. 1)t n, ! i Mo, M(g,-n, 3!

] ] J.1 T Y s B % 3

Application of these formulas is illustrated in the following example and exercise. The

macrostates of the 4 particle example, Table ITIA-2, will be used. {(Macrostate

»

l6Recall rhat the term particle refers to the entire entity, not to its parts sepa-
rately. Subsequent considerations (Unit IIIC) treating the components of gaseous mole-
cules will depend on the evenness or oddness of portions of the total particle.

Py, Y
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determinations depend on the number of particles and total energy but not on particle
type.)

Example 8. Determine the number of microstates and the probability of each macrostate of
the 4 particle system, Table IITA-Z, when the particles are Fermicns.

Macrostate I. The distribution of Fermions in macrostate I is K s o
- : Py et e St [N N W N
represented at the right. The Fermions are represented by in- T D aXni
. N . . . . [T P U IV VY VR S W S S
dlstln%ulshable %'s and no more than one X is permitted in any - — o’
state.l? This gives a total of only 9 microstates. . L e

LS R R S VY 1 U § N N | W S
Macrostate II. To determine this number of microstates we T L Ll
apply egqn. ITIA-Tc

x X 1

WFD=( 1 N3 _\{ 31 )[ 3! }( 1! )=1 Tos IS T
It \1:(1-1)1)(0!(3-0)1) 01(3-0) 1,131 (3-3) 1167 (1-0)! = = -

Macrostates ITII, IV, and V. Inspection of these distributions reveals that they require
two particles in at least one state (nj3 y11 = 4, 83 = 33 nj gv =2, 85 =1; ng y =2,
gs = 1)}. Therefore, these macrostates have no microstates.! 19

FD D FD

Wir Wy =Wy =0

And the total number of microstates is

5
WO = [ W =941+0+0+0
i=1

13

10

and the macrostate probabilities are

FD _ _ FD _ i FD _ FD _ _FD _
py = 0-% Pyp = 9-13 Prry ~ Py T Py

Exercise 9. Determine the number of microstates and the probability of each of the macro-
states for the 4 particle system, Table IIIA-2, with the particles treated as Bosous.
{Answers in Table IIIA-3.)

Table IIIA-3 summarizes the probability results for the 4 particle example whichFEas
BE

MB
been repeated for Boltzons, Bosons, and Fermions.20 Notice the pattern W} - wi > wi

e would expect Boltzons to have more microstates than Bosons since Boltzons are distin—

guishable. (Yew microstates occur due to interchanging of particles.) Bosons have more

174 similar figure for Bosoms would include additional microstates with the two par-
ticles on the 3rd level sharing each of the 3 states.

18ppplication of eqn. IIIA-7c¢ to macrostates in which g, > n. ; will call for nega-
tive factorials. Interpret such a condition as precluding t%e ma%fostate, Wy = 0.

191 some texts the macrostates of zero probability are not counted amang the systen
macrostates.

28The macrostates appear in the table in the order of decreasing probability. This
is not happenstance. They were arranged in that mamnner deliberately for ocur subsequent
convenience., See property determinations below.
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microstates than Fermions because any num-— TABLE IITA-3: MICROSTATES AND PROBABILITIES

21 OF MACROSTATES FOR SYSTEMS OF FOUR
ber of Bosons can occupy an energy state. BOLTZONS, BOSONS, AND FERMLONS

This concludes our discussion of macrostate

Macrostate W’;_B p‘:.B ,‘?—E p;“ uf"n p?
probability determination. Since the concept
I 324 0.537 18 0.346 9 0.9
of a macrostate, microstate, and microstate I 108 0.178 10 0-192 1 0.1
ITI 81 0.134 15 0.289 4] n
probability are important to our next topic, o - DT 0
the determination of thermodynamic properties, Y c e 8% Dp e B0 il il
. Total 603 1.000 52 1.000 10 1.0
a summary of terms is appreopriate.

Macrostate. When a system of N particles has a total energy U and occupies an
array of energy levels ej(j =1,2,3,...,J), its particles can be distributed
over this array in any manner that satisfies
J J
and k= Z n
j=1

U= .. & e
j=]_ J,1 J Js1
The solutions of these equations-are the particle distributions over the levels,
nj it Each of these i = 1.2,3,...,I" solutions is a macrostate.

3

Microstates. A microstate is a more detailed description of the particle dis-
tribution than a macrostate. It specifies not only how many particles are in

each level, but also in which energy states they reside. 1In the case of dis-

tinguishable particles, a microstate also specifies which particle is in which
State. A microstate distribution completely specifies every distinct charac—

teristic of the particles among the accessible energy states.

Macrostate Probabilities. It is not important that micrdstate particle distribu-
tions be specified, only that the number of microstates in each macrostate, W

i»
be determined. Eqn. IIIA-7a,b, or c permits this determination for Boltzomns,
Bosons, and Fermions, respectively. This determination allows the macrostate
probabilities to be determimed.

wi
= — ITIA-9
Py = ( )
I v,
i=1

s 2 BE FD
21ror macrostates in which no level holds more than a single particle, wi = wi

°

Ans. 8. (a) All diaromic molecules necessarily are even; Boson. (b) One electron, one
proton, also even; Boson. (c) One proton, odd; Fermion. (e) A single electron is odd;
Fermion. This recognition may help put the Bohr electron shell model in better prespec—
tive. As you recall, the first shell can contain at most 2 electrons, the second 8, the
third 18, and so on. It is now recognizable that the shells correspond to levels with
the first shell having 2 states. It will hold no more than 2 electrons since both states
would then hold a particle. And the Pauli exclusion principle will permit no more than

one electron to occupy a state. (e) and (f) Waves are massless. They have no electrons,
[protons, or neutrons. Zero is an even number; Bosons.
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C. Properties

The properties of a macroscopic system result from the microscopic behaviors of the
particles of which it is composed. Specifically, the "insctantaneous' properties of an
isolated system are those of the macrestate in which it resides at that instant. The mag-
nitudes of the energy levels, Ej, and the distribution of particles among the levels, nj,f
are sufficient information to determine properties. System properties are related to the
energies of occupied levels by a functional relationship, say A(ej). For a specific macro-

state an intensive property per particle is written

J
io=2 TV on, A(el) (1714-10a)
i N . Js1 ]
j=1
An extensive property is written as
) _ B J
R, = WA, = jzl n ,ix(gj) (IIIA-10b)

Example 9. The system of 4 particles restricted to 5 energy levels was found to have five
macrostates as listed im Table IIIA-2, <Calculate the intemsive macrostate property that
corresponds to the particle energy relation, A(gj) = e; for macrostate I.

Before we determine the value of this property, let us consider its significance. Our en-
ergy levels have been chosen consistently as those of the particle in a box. The particle
in a box is a model for the tramslatiomal kinetic energy of gaseous particles, g4 =
(m*V%/2). Thus our functiom is linearly proportional to particle velocity, A(e.) = E%“JV.
Thergfore, it is proportional to the gaseous particle momentum. The pressure il a ga is
a measure of momentum exchange at an interface. The property to be determined is propor-
tional to the pressure of the particle in a box. We will call this property the paeudo-
pressure. The pseudopressure of macrostate I is determined by means of the substitution

of its distribution (nl,I = 0, 1:12’I =1, n3,I =2, nﬁ,I = 0, ng = 1) into eqn. IITA-10 a.
Ty 2 % B2 L L L L L L
Fal § oL Fo 2 (0.3 4167+ 2:97 40117+ 1129 = 2.97840 B)

I N 551 i, L i 4 o}

Exercise 10. Use a calculator to determine the pseudopressure for macrostates IT to V for
the 4 particle example. Five place accuracy is needed below to emphasize differences.
(The answers are listed in Table IIIA-4.} :

The previous example and exercise have illustrated the manner in which macrostate
properties are calculated. Our interest is in observed properties. Real systems shift
from microstate to microstate with extreme rapidity under the action of particle colli-
sions. These microstate shifts give rise to the appearance of a sequence of different
macrostates. The system properties are those of the "then present' macrostate; thus the
instantaneous properties vary in time. Though macrostate shifts do not necessarily occur
with each collision (microstates of the same macrostate can occur in sequence}, their fre-

quency of change is sufficiently rapid that no observational technique can detect the
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properties of a single macrostate,2? Rather, the aobserved properties are the time aver-
age of many microstate and macrostate changes. TIf the time span is sufficient, the assump-
tion of equal microstate probability will allow the calculation of the long time or
"ensemble" average properties om the basis of a weighted average over the macrostates.2?
Each macrostate contributes to the ensemble average system property in proportion to its
probabilitf. e designate ensemble average properties with a ("), for either intensive or

extensive properties,
*

o~ I* - ~ I -
A= 7 p.X,  or A= 7 p.R, (II1IA-11)

. ii , i'i

i=I i=1
Macrostate average properties, like macrostate distributions, are identical for all three
statistics. However, ensemble average properties and hence observed properties vary with

particle type for the same macrostate possibilities.

Example 10. Calculate the ensemble average pseudo-pressure E%, for the 4 particle system
of Boltzons, Table IIIA-2. (Five place accuracy will be required to establish differ-
ences. ) :

The macrostate probabilities, p?Bare'listed in Table IITA-3 and repeated in Table IITA-4
along with macrostate average pSeudo-pressures. Substitution into eqn. TIIA-11 gives

¥_ 2 %
e = pief = [0.537-2.9784 + 0.1792.9205 + 0.1343.0000
i=1
1
+ 0.090-2.9568 + 0.060°2.9151] B? = 2.9649 B
Exercise 11. Use the TABLE TITA~4: CHARACTERISTICS OF 4 PARTICLE SYSTEMS

macrostate probabil-
ities, p; ~ and P

OF BOLTZONS, BOSONS, AND FERMIONS

?

MB BE Fn
and macrostate average T B Yoo
pseudopressures listed R I - <) HBE ,i;ill R 'i;_il
in Table IITA-4 to com— Yoo & ' e ' o
pute the ensemble aver— ' 29786 0.5373  q.4583% 0.1881  0.37411 n.3  0.1951z
age pseudopressure for 11 2.9205  0.1791  1.4982% 0.192%  I.s770% 0.1 17513
a system of 4 Bosons 1 3.0000  0.134)  1.1838% 0.2885  1.1020% 0 -
and 4 Fermions. (The tv 2.9568  0.0895  ¢.2735% 0.115  0.3547% 0 -
answers are listed in v 2.915L  0.0597  1.6810% 0.0577  1.75052 o -
Table IITA-4.) + M « BE - FD

1.000 [ig} = 2.9649  1.000 fﬁ% = 2.9671  t.00 [561 . 2.9726
o [+] a

2 P . . .
%as a specific {llustration of the magnitude of ‘the collision rate, in one cm? of
3lr at STP there are on the order of 1028 collisions/s.

23 . .

A more formal treatment of statistical thermodynamics introduces the probability
dlst?ibution in_terms of the instantaneous condition of an ensemble of identical system
replicas. Our isolated system model is known as a micrecanonical ensemble. The equiva-
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The examples and exercises of this sectiom have used the pseudopressure of the 4
particle example to illustrate the determination of properties. Table IITA-4 summarizes
these results for comparison. It demonstrates that the statistics dependent macrostate
probabilities (p?B, pEE, and pzn) influence the ensemble average (i.e., observable) prop-
erty. While our very small and unrealistic example shows these differences to be slight,
certain real systems exhibit behaviors sufficiently different to merit the distinctions
between distinguishable, Boltzons, versus indistinguishable~—symmetric, Bosons, and indis-
tinguishable— antisymmetric, Fermions. A case in point is the remarkable properties of
the Boson, He", in its liquid state below 2.172 K. This liquid exhibits unique properties,
a so-called superfluidity, that are quite different from the ordinary liquid properties of
the very similar Fermiom, He3. Superconductivity, a similar phenomencn, is a manifesta-
tion of -Boson—type behavior exhibited by free electron pairs that occur in some conductors.
Other effects of particle type are considered in more detail in Units IIID and IILE.

Qur present interest is not to explore the differences of the three types of particle
behavior. Rather, it is the development of the concept and conditions of equilibrium at-
tained by all isolated systems.

Hote to the Student. The preceding section has developed operational procedures for cal-
culation of distributions, probabilities, and properties in small systems. This provides
necessary background for extension to real systems. On the basis of these concepts, we
will build an understanding of the ratwre of, and processes that lead to equilibrium.

This is the primary objective of Unit ITIA. Students who ars not confident of the cper-
ational techmiques so [ar developed may find the following comprehensive exercise helpful.

Exercise 12. Consider a system of 4 independent particles of total energy 8 C (where C is

a constant with units of energy). Three energy jevels are accessible to the particles,
1cC,2cC, and 3C their degeneracies are g; = 1, g0 = 2, 83 = 35 respectively. Answer the
following questions:

I. Macrostate Determinafion (Trial and Error)

a. Determine the macrostates of this system.

+ NY"'

b. Calculate the pseudopressure for each macrostate, &

11. Determination of Particle Type. For ecach of the following particle descriptions,
classify the particles as Bolrzons, Bosons, or Fermions. (M is molecular weight).

a. System "A" is composed of four He" molecules, M = 4.

b. System "B" is composed of four particles. Each of them is a diatomic molecule
composed of ome atom of deuterium (1 proton, 1 neutron and 1 electron) and one atom
of normal hydrogen, M = 3.

¢c. System "C" is composed of 4 particles all of the same molecular weight, M = 3.
These 4 particles are: a He? artom; a molecule of deuterium; a cluster of 3 neu-
trons, and an "extra' heavy hydrogen atom (1 proton, 2 neutroms, 1 electron}.

Verify your answers to parts I and IT before proceeding.

11I. Determination of Systems Characteristics. For one or more of the systems "A'", "B"
and "'C".

a. Determine the number of microstates per macrostate, (wi), and the total number
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of microstates, W. ({(Use the appropriate counting formula, eqn. IITIA-7a,b, or c).

b. Calculate the macrostate probabiliries, Py~ N

5

c. Calculate the ensemble average pseudopressure, e-.

d. Calculate the deviation between the ensemble average and more probable macro-
state pseudo-pressures

- ~

DE% - ;EPI/E%] %

ITI. EQUILIBRIUM

A four particle example has been developed extensively (Tables ITIA-2, 3, and 4).
Included in the tabulation of its properties are the deviations of the macrestate’s pseudo-
pressure from the ensemble average pseudopressure, |;% - 6%1/62 (Table IIIA-4). When
these deviations are compared for each of three statistics we find that the most probable

. . . % i
macrostate's pseudopressure is a close approximation of the average, E;p = g%,28

As this tiny system has only 5 macrostates and the most probable macrostate rather domi-

nates its probability distributiocn, it is not unexpected that the most probable macro-
state's properties would be close to the probability-weighted average properties. But our
purpose in this section is to determine those characteristics of systems small enough to
be studied in detail, that are maintained or enchanced as we extrapolate to realistically

25 e will find that as N increases I* increases geometrically. As a re-

large systems.
sulet, the probability of individual macrostates, including the most probable, decreases.
The most probable macrostate does mot dominate the probability distribution of real sys-—
tems. Yet, we will also find that the correspondence between the properties of the most
probable macrostate and the ensemble average properties gets better and better as system
size increases. The following section demonstrates how this trend is evidenced and ex-

plains why. With the help of this study we can recognize the meaning of equilibrium.

A, Extrapolation to Large Systems

In this section we extend the conclusions drawn from the 4 particle example, Table
1IIA-4, by considering successively larger Boltzon systems with the same average energy

per particle in the same 5 energy levels. For a six particle system, Table IIIA-5, we

24Tn the case of the Boltzon systems, the next to least probable macrostate is even
closer. 1In large systems it is not unusual for several macrostates to be closer to the
average than the most probable. This has no particular significance. The emphasis is on
the observation that the easily identified most probable iz always a close approximation.

25Trial dnd error determination of macrostate distributions is incenceivable in real
systems. There are 10!'? molecules/cm® in air at STP. The 30-particle example, see Table
I111A-7 below, required a large fraction of an hour in execution time on a large computer
to find its macrostate distributions.
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TABLE IIIA-5:

A 6 PARTICLE SYSTEM OF BOLTZONS

MACROSTATE A ?, 2, ;EIB: = s
t T M M M s
1 0 2 1 3 0 43, 740 0.505 5.05 2.975 0.333
1r 1 0 2 1 9 14,580 0.168 1.68 2.946 0.505
111 1 1 1 3 1 4,720 0.112 1.12 2.932 1.088
w 0 1 [) 0 1 7,290 0.084 0.8 1.985 0.697
v 0 H 2 0 2 7,290 0.084 0.84 2.971 0.212
vi 1 0 3 a 2 1,620 0.018 0.18 2.943 n.727
vII 1 1 1 I 3 1.080 0.012 0.12 2.928 0.726
vIir o [ a o 0 729 .0.008 0.08 3.000 1.212
1X a b 0 0 3 540 0.006 0.06 2.956 0,223
X 2 0 0 0 4 15 0.0001 0.001 R 2.886 2.631
86,606 1.000 Avg. 1.00 E%ln: - 2,964 Avg. 0.850
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find that pmp is reduced from that of the &4 particle systfz. Yet o?ierve that the pseudo—-
pressure deviafion i; alfo reduced (N = 4, pmp = (0.537, |€2 - EEleEE = 0.,442; N = b,

Pmp - 0.505, |e® - E;piIE% = 0.333). An understanding of why this somewhat paradoxical
trend occurs can be achieved by éefining relative macrostate probability, R;. In terms
of the smaller, 4 particle system with its 5 macrostates, if macrostates were equally
probable then each would have a probability of 1 in 5 or 0.20. But macrostates are not

equally prokable. Thus, the most probable macrostate appears (0.537/0.20 =} 2.68 times

its “fair share.” Or more formally,

R,
i

"

p,l

*

(IT1A-12)

Macrostates with relative probability above one exceed 'fair share" probability; those

below one are relatively unlikely.
proportionately likely.

tive probabilities above one.

almoset twice the factor of the 4 particle example (Rmp'6 = 5.05: R

mp , 4

Macrostates with large relative probability are dis-
In the 6 particle example the first three macrostates have rela-
The most probable macrostate exceeds its fair share by

= 2.68). There—

fore, even though the absolute probabilities are lower in the larger system, the distri-

bution is more distorted in faver of its high probability macrostates.

Ans. 12. There are three macrostates, . e A S, I
I* = 3. Their distributions and pseudo- b T ptt v Lt v
pressures are shown at right. L $ Lked s 0 an % sk

T 1 1 1.3%01 9 1,450 1 L. l4d n.&719
II. {a) He" is composed of 2 neutronms, e 0 @ L4642 5 %250 O 0 16 0.0747
2 protons, and 2 electrons; thus these - T e

4 indistinguishable particles are Bosons,

{b} Indistinguishable molecules composed of n

number of substomic components and are Fermio

ormal and heavy hydrogen atoms have an odd

ns.

since each of the 4 particles is distinguishable from the others.

TII.
tion the pseudo-pressure deviations are:
(C) 1.3858, 0.310%,

The number of microstates and their probabilities are shown in the table,.
(A} 1.3a89, 0.0876%; (B) 1.3901, 0.0%;

{c) the correect answer is Boltzoms,

In addi-
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In Table IT1A-6 the effect of further TABLE IITA-6: EFFECT OF SIZE ON SYSTEMS
OF BOLTZONS

increases in system size on system charac-

s . ; . feg-e?
teristics is summarized. First, as expected, s 1 14y W WK e R e’“’ﬁ r°/°
e
larger systems have more macrostates per par- 7 2
* 4 5 1.25 5.0% « 10 I.5-10 2.537 2.64 0.642
ticle than smaller systems. (N=4, I7/N = 6 10 166 R.66+10°  1.4-10% 0.505  5.05 0,333
10 2% 280 Loes-100  ni-wd gy ars 0329

. = * =
1.25; ¥ = 30, £7/N = 13.9). The number of 6 w23 1.17-10" os-11 5053 e.1s 0267
microstates increases even more rapidly with . . . D ' : ;
the addition of particles. And, as expected, 30 ws 139  2.65-1027 0.5+ 105 0.064  26.71  0.209

the absolute probability of the most probable

maerostate decreases with increased System v - We. of pareicles, 1o - Torsl wor o macrostates, W - Toral no. of

microstates. All systems have dverage energy 9B and the same 5 levels.
- a

size; but the prelative probability increases.

Thus, in larger systems the distribution of probability is increasingly digtorted toward
more probable mgerostates, i.e., those with high relative probability. In that sense the
larger system is spending more, not less, time in high~probability macrostates. But not
in the most probable, which is simply one member of the group of high-probability macro-
states.

What about properties? To see the TABLE IITA-7: SUMMARY OF PROPERTIES OF

relationship between the group of prob- A 30-PARTICLE SYSTEM OF BOLTZONS

able macrostates and those of the system .. s = 2.648 - 1027 e¥ = 2,9644 87
consider the 30-particle example. Since ;i_s‘“o/
: n 1 M1 Mar Msa Py Ry [ Y,/
it has 419 macrostates we present only ot Bt 3 ’ e
I 1 ? SR 3 6.39-107° 2.66 10" 2.209
an extract of its data, Table IITA-7. x PO ;12 3y oz 13- 10b 513
-2 o
C .52+ 1 L1810 £.188
The characteristics of the most, 10th, = t ! nooe 3 0-6 8.7 -3
X cr1x s 9 13 8 6 .01 1.26 - 10 a.663
20th, 219th-most and the least probable e 10 o 0o o0 20 1L13:16% o102 2.2
macrostates are listed. None of the 'biz[" _'.]z s
£3 S O/
gl-e’ -]
- P . {«]1
individual macrostates is very probable. Groups of Number of Total R
Macrostates Microsctates Probability 42{ev]
But the relative precbability of even the L 2.32-1027  8.76-10F  o.298
28 Lol
twentieth most probable macrostate is i O e T
3 3.86 + 1Q 1.45- 10 Q.564
quite large, RXK = 6.78. Thus, though 4 10w 10 ape 107t 0.570
. 3 5 1.0¢ - 10%® 2.6+ 107° 0.570
the system will rarely be found in any . L3+ 103 5.0+ 1075 0.849
. 3 r 3 > 3 - - 2‘ - _6
specified individual macrostate, it is ? BBTIO G sni0 0.833
8 1.03-10 3.9+ 10 1.01
very likely to be found within the ’ 2.73-10°0 Lo-o® 147
10 La-w!? szeettt s

group of high relative probability

macrostates. Table IITA-7 shows that the system spends 87.67% of its time in one of the

42 most probable macrostates, Group 1, and 98.1% in the first 84, Groups 1 and 2.

-

Notice that the distributions of the three probable macrostates listed are similar

to one another in form; each has a rather "disordered" distribution ameng the states.
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The two improbable macrostate distributions, in contrast, are bunched more tightly among
the levels.2® They are more "ordered." As the distributions of the probable macrostates
are similar, so are their properties. Since the system spends time dispropeorticnately in
the probable macrostates, the ensemble average is determined predominantly by the proper-
ties of these macrustates. Correspondingly the pseudopressure deviations of the prob-
able macrostates listed are small. Indeed this is true for each member of Group 1. [Its
RMS deviatiom is 0.298%. And the RMS deviation of each successively less probable group
is increased. With this illustration we see how and why the most probable macrostate's
properties can converge toward the ensemble average properties as thé system size in-
creases. The most probable macrostate is simply one member of the group of probable ma-
crostates. The last column of Table TIIA-6 shows a continuous decrease in pseudopressure

deviation as system size increases. It is not difficult te project that in real systems,
Eﬁp > a%. This conclusion eliminates the necessity for determining the macrostate distri-
butions by trial and error. We only need the digtribution of the most probable macro-
state, nj,mp' We will be able to determine this distribution amalytically, Unit ITIB.

We follow this procedure to determine properties in the remainder of Units III.

We have considered the relationship between macrostate probability and properties in
successively larger isolated systems in order to achieve an understanding of the behavior

of real systems. We conclude this extrapolation with a summary.

Equilibrium. The macrostate probability in a real system is dominated by a tiny
proportion of the macrostates, those with high relative probability. These macro-
states constitute the equilibriwm growp. Individually, none of these macrostates
is particularly probable, but collectively their probability is overwhelming.

The macrostates of the equilibrium group are similar to one another; they are
characterized by their disorder and they have egsentially the same properties.

As a result the long-time or ensemble average properties of the system are in-
distinguishable from those of the equilibrium group macrostates. A system is in
equilibrium when its observed properties are the same as the long time average.

Nonequilibrium. An isolated system is out of equilibrium when its properties are
observed to deviate from the long time, ensemble average. Such an observation
requires that the system traverse a sequence of macrostates that includes a large
propertion of improbable nonequilibrium macrostates. The sequence must be of suf-
ficient duration that observation of the property deviation is possible.

The test of equilibrium is the absence of property deviations. This implies prop-
erty measurement. Our illustrative energy states are those of a simple compressible

media.2? Its measurable properties are pressure, temperature, and volume. But in an

26The lowest and highest levels are nondegenerale; therefore they arc less occupied.
27The levels of the particle in a box arve governed by its volume, ea = Eg(v).
The energy levels of other types of single media would be dependent on t eir displacement
variable, €5 = ej(X), or variables in complex media, £5 = Ej(xk).
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isolated system volume is fixed. Only specific volume, or its reciprocal— density, could
be observed to deviate. Deviations can only be measured in terms of specific volunme,
pressure, Or temperature. These are intensive properties, they are defined, and must be
measured, locally. Thus equilibrium, i.e., an absence of property deviations in an iso-
lated system of identical particles, requires that the intensive properties be spatially
uniform as well as temporally invariant.28:29 As a consequence we recognize that each
spatial subdivision of an isolated system of identical particles in equilibrium contains
the same propeortion of the constrained energy and number of particles. Moreover, the
properties in that subdivision are the same as they would be if it were itself an isolated

system.

B. Approach to Equilibrium

Our development has been premised on the hypothesis that macrostate sequences are
governed by pure chance. Thus, over long times the probability of a sequence that passes
through a series of nonequilibrium macrostates for a period long enough to exhibit prop=—,
erty deviatien 1s 0i1.30531 Byt it is unrealistic to limit our consideration to systems
that have been isolated for long times. Indeed, our primary interest is energy exchange.
Typically a system's energy is altered by heat or work occurring 2t a localized position
on the boundary. Once the energy transport is concluded the system can be considered iso-

lated. But when the transport has been rapid, the system js left with a surplus or deficit

28y are ignoring the effect of extrinsic fields imposed on the system, e.g., grav-
ity. 1In the presence of an extrimsic field the equilibrium distribution might be nonuni-
form but it is still uniquely defined,e.g., hydrostatic pressure variation.

294 system of identical particles requires that each has the same accessible energy
states. This eliminates multiphase systems from consideration. For example, particles
in a solid have one set of accessible states while those in a surrounding vapor have
another set. The more general procedures of a Grand Canonical Ensemble are required to
extend our consideration to such cases.

301n the previously considered 30 particle system, if we assume 107 collisions/s the
least probable macrostate would occur once every three years. Random probability would
expecr the system to exist in the less probable 80% of the macrostates 19 times pér sec-
ond. If we assume that a measurable deviation would require that the system exist in one
of the less probable 80% of the macrostates 20% of the time for a period of 0.1 s, we
could only expect such a sequence once every 6,767 years.

31gur development has concerned macrostates of the entire system, not the spatial
distribution in subsystems. It Ls theoretically conceivable that a property might devi-
ate locally While corresponding regions deviated in the opposite sense in such a manner
that the ensemhle average property over the whole system was constant. But one intui-
tively recognizes that this probability is even smaller than that of other events already
found negligible.
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in its energy density locally in the region of transfer.>2 Thus the end result of the
energy exchange process is a nonequilibrium isolated system. Initially the macrostate
sequence of such a system is not governed by pure chance; it begins in an improbable non-
equilibrium macrostate.

How long a microstate sequence is necessary before the long time probability takes
over and the properties become those of the equilibrium group? This question can be
answered intuitively by considering a physical example. When a tuning fork is struck, it
is placed in a aonequilibrium state. Its vibrating prongs indicate a high energy density
in these localized regions and the single frequency, in-phase vibration of the fork prongs
indicate the presence of an ordered nonequilibrium macrostate. After the strike, the fork
evolves toward equilibrium. The energy, initially localized in the vibrating prongs, is
distributed throughout the material by means of particle collisions. The redistributed
energy is manifest primarily in multifrequency and multidirection (i.e., highly disordered)
vibration of the atoms in the metallic lattice. Equilibrium macrostates are achieved and
the fork ceases to ring. Our experience is that this redistribution occurs quite rapidly.
And that once the vibration stops, it never starts again spontaneously. Thus an isolated
tuning fork goes from its initial improbable macrostate to more probable equilibrium ma-
crostates in a continuous irreversible sequence.>? This is the qualitative manner in
which equilibrium is obtained. A mere quantitative description of the process can be ob-
tained through a detailed consideratiom of the collision processes of a small model system.
Note to the Student. The following quantitative illustration establishes the inevitabil-
ity of a rapid approach to equilibrium through the study of transition probabilities,
Table ITIA-§. Neither the determination nor the use of these probabilities is an objec-

tive of the wnit. This section is intended to help the student recognize tie progcesses
which lead to equilibrium macrostates are overwhelmingly probable.

The mechanism of microstate change is collisions between particles. These callisions
are restricted by the requirement that the energy and number of particles are conserved

during each collision. 3% FEach macrostate can be reached from every other as a result of

32glectric and magnetic polarization work processes penetrate rhe boundary and are
performed throughout the system's interior. In that sense, they can leave the energy den-
sity in the system spatially uniform. Yet they are still apt to terminate in a low-prob-
ability nonequilibrium macrostate. For example, microwaves penetrate the receiver, dis-
tributing the energy they deliver; but they promote particle vibration at a single fre-
quency. This corresponds to ordered nonequilibrium macrostates.

331n fact, the tuning fork is not isolated. As it rings, it emits sound. A more
rigorous statement of this example would place the vibrating fork in a vacuum. It would
then be isolated. The processes and description for these circumstances are otherwise
the same.

I%vomentum must be conserved as well; but our discussion has omitted its consideration
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a single collision invelving two or more particles.

two particles are sufficiently infrequent that they can be neglected.

tion some macrostates cannot be reached from others by a single collisicn.

net collision probabilities remain representative.

As a specific illustration, consider two particle collisions occurring in a system of

But collisions involving more than

Under this assump-

However,

the

6 Boltzoms with 4 energy levels (3, 6, 9 and 12 BD with degeneracies 1, 3, 3, and 1, re-

spectively). The total energy of the 6 particle system is 54 BO, and the average energy

per particle is 9 BO.

probabilities and relative probabilities are listed in Table ITIA-8.35

the transition probability matrir for this system.

The 7 macrostate distributions of this system, along with their

It also presents

The elements of this matrix are the

probabilities that a two-particle collision occurring to the system while it is in the

macrostate of that row will result in the macrostate of that column.

ity of transition from macrostate I to II is
IIT is Pr_r1 = 0.030, etc. The elements of each row add to one.3f The diagonal elements
represent the probabilities of two particle collisions that leave the system in its orig-
inal macrostate.

reached by a single two~particle collision from the macrostate of that row.

TABLE TIIA-8:

Pr-11

= 0.172 and that from macrostate I to

Thus the probabil-

MACROSTATES AND TRANSITION PROBABILITIES
OF A SYSTEM OF 6 BOLTZONS

INITIAL MACROSTATE

PROBABILITY OF OUTCOME
GF TWQ PARTICLE COLLISION

Comppomry ey o om R S E R £ 5 I P S &1
T § 1 “ 1 .90 2.73 .76 172 .030  ©  .043 O 0
1 0 2 2 2 .39 2.73 .15;\\:?13 C) U T S B [ B
i 1 0 3 7 .087 0.61  .215 .162\\t515 a8 o0 o , 0
w 1 1 1 3 .058 0.40 0 323 le2 ks 0 Lusé 012
v 0 0 6 9 .9 0,27 .0 O o 0 .600 © 0
vI 0 1 0 3 L029 0.20 0 .43 0D L098 ¢ L4359 0
V1L 2 o o 4 .008 0.0 o 0 o 86 o 0 136

Ep=1Bg Ez=fBy £3798, £, 8126,

gyl

2,73

g3=d

By=l

3This system is an abbreviation of the 6
the original fourth level, 11l BO, eliminated.
II, and TIT of Table IIIA-S5) cannot be reached
The 7 macrostates of Table IITA-8

collisions.

-

38The probabilities are the proportion of ways a

duce each possible rype of macrostate.
collisions which leave macrostate I unchanged,
0-1v, %-v, 0-VI, and 0-VII, total is 209.

In row 1, for example, there are 156 two-particle
36 which produce macrostate IT, 8-TII,
= 156/209 = 0.746 etc.

Thus,

Pr1

Zeros represent the fact that macrostates of that column cannot be

particle system considered earlier with
Macrostates with this level occupied (I,
from the other macrostates by 2 particle
are the last 7 of Table IIIA-S.

two-particle collision can pro-

&Kﬁﬂh*ihtﬁ -
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The elements on the diagonal (the ne change probabilities) are on the average the
largest elements of the matrix. In general, their value decreases as we proceed from the
most to the least probable macrostates. The elements on the diagonal separate collisions
that result in more probable macrostates (below the diagonal) from those tha. result in
less probable macrostates (above the diagonal). Notice that the matrix is symmetric with
respect to its zeros. (Macrostate IV cannot be reached from macrostate 1, Protv ° 0 via
a two-particle collision. Conversely, macrostate I caunot be reached from IV, Pry_1 = 0).
For nonzero terms each probability of change to a more probable macrostate is larger than
its counterpart above the diagonal pailr (e.g., Prr1-1 = 0.215 > PI_TIT = 0.030). Thus it
is recognized that the system tends toward more probable macrostates as collisions occur.
The ratic of the sum of the below-diagonmal to the above-diagonal probabilities is 5.46,
jndicating a better than 5 to 1l tendency that any macrostate change will be toward more
probable macrostates. It was pointed out above that an isolated system that has just
undergone interaction is likely to be in an improbable, nonequilibrium macrostate. The
transition probability matrix indicates that after relatively few collisions it is very
probable that the system will have evolved te a high probability, equilibrium macrostate.
Furthermore, the :;ansitipn table shows that once equilibrium is achieved, a spontaneous

return to nonequilibrium states is extremely improbable. Consider the feollowing example.

Example 11. After an interaction, the 6 particle system of Table ITIA~8 is found in the

least probable macrostate, VII. Determine the highest probability sequence of macrostate
changes that rvesult in the most probable macrostate, the probability of that sequence ard
the probability of the converse sequence.

Starting in macrostate VII the most probable result of a single collision is macrostate
IV, pyrr-iv = 9.864. 1In row IV the most probable individual result of collision is no

change, Pyy_1y = 0.449, though the system is more likely to change to one of the two ac-
cessible more probable macrostates (pry_y1r + PIV-II — 0.162 + 0.323 = 0.485). The most
probable change is from IV to II, PIv_ =70.323. In fact, macrostate II is one of the

two equal probability most probable macrostates. In that sense, the very high probabil-
ity of no change in macrostates II and I, pyy_y7 = 0.713, PI.1 = 0.746, is supportive of
the maintenance of equilibrium. The change to macrostate I is the most probable change,
Pri-1 = (0.185. The probability of this sequence is

= 0.864 - 0.363 - 0.185 = 0.548 - 107

Pyr1-1V-II-T

Even though this is the most probable sequence of change, it is not very probable, No in-
dividual sequence of occurrences is. The reverse sequence is much less likely.

= 0.172 - 0.042 + 0.012 = 0.867 » 10

4
Pl 1T-1V=VII ~ PI-11 ° PII-1v ° PIv-vII

2 ]
In fact, the system is PVII-IV—II*I/PI-II-Iv—VII = 6.32 - 10" times more likely to go from
the least to most probable macrostate by this sequence than vice versa.

The preceding example reminds us that collisions occur in sequence. A product of the
ratios of below ro above the diagonal transition probabilities Hi jpijlpji might be more
>

1#j
meaningfully compare than their sum. This ratio, 8.34 + 107, strongly indicates the
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inevitability of processes that lead to equilibrium in this 6 particle system. TIn more

realistic, larger systems these trends are even more pronounced.

SUMMARY QUESTIONS

We summarize this unit, particularly the last and most important sectien, with sev-
eral questions.

1. Distinguish between dependernt and independent particles.

2. On what basis are particles classified as Boltzons, Bosons, or Fermions?

3. Describe macrostates and microstares and distinguish between them.

4. How do the properties of microstates within a single macrostate compare?

5. How frequently (answer qualitatively) and by what mechanism does a "real" sys~—
tem change, (a) microstate? (b) macrostate?

6. What are the orders of magnitude of the absolute and relative probabilities of
the most probable macrostate in a real system?

7. Compare the relative macrostate probability and the nature of particle distribu-
tions over the levels for the macrostates of the equilibrium group, one to another
and to the remaining macrostates.

8. How do the properties of the macrostates of the equilibrium group compare,
(a) with one another? (b) with the most probable? (e) with the ensemble average?

9. Consider a system which has been isolated For some time. How likely is it to be
in one of the equilibrium group macrostates? Relatively how frequently will the sys—
tem encounter one of the nonequilibrium macrostates? Relatively how frequently will
the system spontaneously go through a sequence of nonequilibrium macrostates long
encugh that there is a measurable fluctuarion in its properties?

10. Consider an isolated system immediately after an energy interaction. How likely
is it to be in an equilibrium group macrostate?

11, 1If an isclated system is released from a nonequilibrium macrostate describe its
subsequent time trace through the macrostates.

ANSWERS TO SUMMARY QUESTIONS

Students whose answers were equivalent to the following should proceed immediately to
evaluation. Incorrect answers will provide a guide to where further study is needed.

1. The energy levels of dependent particles are affected by the instantaneous posi-
tion or motion of other particles in the system. The energy levels of independent
particles are not so affected.

2. Boltzons are distinguishable particles (lattice points in a solid), Bosons and
Fermions are indistinguishable particles. Bosons have an even number of subatomic
components, Fermions an odd number.

3. Macrostates are allowed distributions over the levels, LI that sarisfy the con-
straints on the number of particles and energy. Microstates specify, additiomally,
in which states the particles reside and in the case of distinguishable particles
which particle is in which state.

4. Sinceg each microstate within a given macrostate has the same distribution over
the levels, they have the same properties.

Answers ceontinued bottom of next page.



APPENDIX IIIA-A

THE SIGNIFICANCE OF THE PROBABILITY DISTRIBUTION

Note to the Student. The concepts of this appendix are presented for general understand-
i ing of the wave function and its magnitude squaved, the positiom probability.

A free particle within a box of dimensious Lx by Ly by Lz can possess any of an in-

etk e

finite number of discrete energy magnitudes. Each of these allowed energy levels corre-
sponds to one or more sets of quantum numbers 2, m, and n, and each set has an associated

: wave function. The wave function for the guantum numbers 2, m, and n is written as

_ Amx . my . nﬂz\
wl’m’n(x,y,z) = A sin Ef-) sin {54) sin (z—]
X N4 z

If we restrict the particle to remain not only within the box but also within some plane
of constant z, the wave function, y{x,y,z), becomes

= H E_T_TE EI’.Y.
wi,m(x’y) A sin (Lx) n (Ly)

5. Changes in microstate and macrostate occur by means of particle collisions. With
almost every collision the system changes microstate. Collisions accur with extreme
rapidity so microstate change is very rapid. Frequently the succeeding microstate
will belong to the same macrostate; thus macrostate changes, though very freguent,
are not as quick as microstate changes. ({See the diagonal of Table [II:A-8.)

=t e

6. The number of macrostates in a real system is sO vast that even the most probable
macrostate has a very low probability. But, on & relative basis the most probable
macrostate appears many times more frequently than an average macrostate. Its rela-
tive probability is very high.

7. The equilibrium group consists of the macrostates of high relative probability.
Their relative probabilities are all much higher than an average macrOSFate. The
distribution of particles in macrostates of the equilibrium group are disordered
among the levels. The lower the probability of a macrostate the more ordered its
distributicon over levels.

8. Simce the distributions of the macrostates of the equilibrium group are about the
same, so are their properties. The most probable macrostate is a me@ber of the equi-
librium group and shares its characteristics. The ensemble average is dominated by
the properties of the probable equilibrium group.

9, Collectively the equilibrium group is overwhelmingly probable. Nevertheless,
individual macrostates which are not members of the equilibrium group occur occasion-
ally. The probability that the system will spontan?0u§ly go.through a sequence of
nonequilibrium macrostates for a measurable period is incredibly minute.

10. TImmediately after an energy interactionm, it is almost certain that a system will
be in a nonequilibrium macrostate.
11. An isolated system which is not in equilibrium will evolve rapidly toward prob-

able equilibrium macrostates as collisions occur. Once in equilibrium the system
will jump around among the macrostates of the equilibrium group.

33




34 36 EQUILIBRIUM-—A Microscopic Understanding

where £, m = 1,2,3,..., and all possible combinations. These functions can be sketched in

three dimensions.?? The energy levels for a free particle within a rectangular plane are

i [ ()]

Let us consider the first few energy levels, wave functions, and probability distributions
for a free particle confined within a plane.
The lowest energy level of this particle corresponds to the set of quantum numbers

(1, 1) or = 1 and m = 1. This particle's wave function is
= in XX} 50 [TY
wl’l(X.Y) = A sin (L ) sin (L )
x y
and its probability distribution is
= A2 oin2 |TX so2 [ TY
Pl’l(x,y) A< sin (L ) sin (Ly}

Fig. IIIA-Al shows a sketch of these functions versus x and y. It is seen in rhe
sxeteh of P1 l(x,y)/A2 that with this lowest energy it is probahle that the particle will

be at or near the center of the plane.

mﬂhwf

J.

Fig. IIIA-Al. The Wave Function and Probability Distribution
for a Particle of Minimum Energy in a Plane

Two higher energy levels for the particle correspond to the quantum number sets,

2=1, m= 2,'2 =2, m= 1. TFor the quantum set (1, 2) the energy is

2
_n [ 2
f1,2 "o (T ) YL
’ 8m X v

The wave function and probability distribution for the quantum set (1, 2) are

"’1,2(’"3’) = A sgin (E—j sin (%JI;_:V_)

= A2 ain2 |TX] . o2 {27y
Pl,Z(X’y) A< gin (Lx) sin (Ly)

and

37The three-dimensional box would require four-dimensional sketches,
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Fig. IIIA-A2 shows these functions for the plane 0 s x = L_, 0 <y <1 .

x ¥

Exercise Al. Sketch the wave function and probability distribution for the quantum set

(2, 1).

An inspection of Fig. ILIA-A2 shows that the probability that the particle will be on

3% The fact that such lines exist is inconsistent with our

the line v = Ly/2 is zero.
macroscopic expectations of particle behavior. It is absurd to think that there are lines

on a billiard rable upon which we will never observe a billard ball as it moves. Ta

(x ,ylmz

P
‘PI,Z(‘")"A 12

Fig. IIIA-AZ. The Wave Function and Probability Distribution
for a Particle in State (1, 2) in a Plane

resolve this apparent paradox we must extend the concept of the probability distribution
function to particles whose energies are relatively enormous in comparison to the initial
energy levels we have pictured. Fig. IIIA~A3 shows that in this limit the probability
distribution will resemble an array of infinitesimally small hills distributed over the
xy plane. Although these hills are separated by lines of zero probability, they are so
close together that one canmot distinguish between the zomes of "allowed" particle posi-
tion and the grid of excluded lines. Thus the effective position probability is uniform
pver the plane and in the limit of energetic particles, the Quantum Mechanical prediction
likely to be anywhere con the

is consistent with intuition, i.e., the ball is uniformly

table,

2
P (ay)A% |, m>2l
Lm Y

S |
V5 5
papapa) L) SpLpep .

Fig. IITA-A3. A Representative Probability Distribution for
a Particle of "High" Energy Confined Within a Plane

38The line of zero probability does not imply that the particle is trapped on one

half A solution of the unsteady state Schroedinger equation shows that the particle can

move across the line.



