
10 - Electrons in Crystalline Solids

◮ Aim of Section:
◮ Analyze energy eigenstates of electrons in crystalline solids.



Introduction - I

◮ A solid can be thought of as a very large three-dimensional
molecule.

◮ Solids are either crystalline or amorphous.

◮ Crystalline solids are regular periodic arrays of atoms, and
possess long-range spatial order.

◮ Amorphous solids are aggregates of atoms having only
short-range spatial order.

◮ Amorphous solids are much more difficult to analyze than
crystalline solids (so we will not consider them).



Introduction - II

◮ Can use many of techniques that we developed to analyze
atoms and molecules to analyze crystalline solids.

◮ For instance, we can make use of Born-Oppenheimer
approximation.

◮ As before, we argue that electron motion is much faster than
nuclear motion, so electron motion can be analyzed assuming
that nuclei are static.



Introduction - III

◮ Suppose that there are N atomic nuclei, of charge ZI , located
at position vectors XI , for I = 1, N.

◮ Suppose that there are N electrons, located at position
vectors xi , for i = 1, N .

◮ Energy eigenvalue problem for electrons takes form

∑
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×ψ(x1, x2, · · · , xN ) = E ψ(x1, x2, · · · , xN ).

◮ Let us write

ψ(x1, x2, · · · , xN ) = φ(x1)φ(x2) · · · φ(xN ). (1)



Introduction - IV

◮ As before, if we look for single-electron wavefunctions that
minimize expectation value of Hamiltonian then we obtain

Hi (xi )φi (xi ) = ǫi φi (xi ), (2)

where

Hi (xi )= −~
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d3xj , (3)

and ǫi is energy of ith electron.



Introduction - V

◮ Wavefunction (1) is not properly anti-symmetric with respect
to electron label interchange.

◮ However, we can incorporate symmetry requirement into our
calculation by adopting Pauli exclusion principle that no two
electrons can have same set of quantum numbers.

◮ In practice, this means we can put, at most, two electrons
(i.e., spin-up and spin-down) into each spatial quantum state.



Crystal Symmetry - I

◮ We have been able to formulate electron energy eigenvalue
problem in crystalline solid in terms of single-electron
Schrödinger equation (2).

◮ In practice, electron-electon interaction term in single-electron
Hamiltonian (3) is far too complicated for us to evaluate.

◮ How do we proceed?

◮ Make use of symmetry properties of crystal.



Crystal Symmetry - II

◮ Lattice translation vector defined as any vector in crystal such
that translation of crystal by vector produces spatial
distribution of matter identical to original one.

◮ If a, b, and c are three noncoplanar lattice translation vectors
in crystal then general lattice translation vector written

T = n1 a+ n2 b+ n3 c, (4)

where n1, n2, n3 are any integers.

◮ In crystal composed of identical atoms, a, b, and c are
relative position vectors of neighboring atoms.

◮ Choice of a, b, and c is somewhat arbitrary.

◮ Let us demand that a, b, and c are set of primitive lattice
translation vectors, which means that set of points x+ T,
where n1, n2, n3 take all possible values, contains all points
equivalent to x by translation.



Crystal Symmetry - III
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◮ a, b and a′, b′ are sets of primitive lattice translation vectors;
a′′, b′′ are not.



Crystal Symmetry - IV

◮ Assume that average electron potential energy,

V (xi ) = −
∑

I=1,N
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has same symmetry as crystal.

◮ In other words,
V (xi + T) = V (xi )

for any lattice translation vector.

◮ Given that kinetic energy operator is invariant under
translation, we deduce that

Hi (xi + T) = Hi (xi ). (5)

◮ In other words, single-electron Hamiltonian is invariant under
lattice translations.



Translation Operators - I

◮ Lattice translation operator, Top, has following definition:

Top f (xi ) = f (xi + T). (6)

◮ There is one translation operator for every lattice translation
vector,

T = n1 a+ n2 b+ n3 c,

where n1, n2, n3 are unique set of integers.

◮ Given that T uniquely specified by n1, n2, n3, can specify
corresponding translation operator as Top(n1, n2, n3).



Translation Operators - II

◮ Product of two translation operators, T ′
op(n

′
1, n

′
2, n

′
3) and

Top(n1, n2, n3), is third translation operator.

◮ Follows from (6) because

T ′
op Top f (xi ) = T ′

op f (xi + T) = f (xi + T′ + T) = T ′′
op f (xi ).

◮ Given that

T′= n′1 a+ n′2 b+ n′3 c,

T= n1 a+ n2 b+ n3 c,

we have

T′′ = T+ T′ = (n′1 + n1) a+ (n′2 + n2)b+ (n′3 + n3) c.



Translation Operators - III

◮ Hence, we deduce that

Top(n
′
1, n

′
2, n

′
3)Top(n1, n2, n3) = Top(n

′
1 + n1, n

′
2 + n2, n

′
3 + n3).

(7)

◮ It immediately follows that

[Top ,T
′
op] = 0.

◮ In other words, any two lattice translation operators commute
with one another.



Translation Operators - IV

◮ Follows from (7) that

T−1
op (n1, n2, n3) = Top(−n1,−n2,−n3),

where T−1
op Top = 1.

◮ Consider
∫

[Top φ(x)]
∗ Top ψ(x) d

3x=

∫

φ∗(x+ T)ψ(x + T) d3x

=

∫

φ∗(x)ψ(x) d3x,

where we have made a simple change of variable.
◮ It follows that

∫

φ∗(x)T †
op Top ψ(x) d

3x =

∫

φ∗(x)ψ(x) d3x,

which suggests that
T †
op = T−1

op . (8)

◮ In other words, lattice translation operator is unitary (but not
Hermitian).



Translation Operators - V

◮ Invariance of Hamiltonian under lattice translation implies that
∫

φ∗i (xi + T)Hi (xi )φi (xi + T) d3xi =

∫

φ∗i (xi )Hi (xi )φi (xi ) d
3xi .

◮ Hence, we deduce that
∫

φ∗i (xi )T
†
op Hi (xi )Top φi(xi ) d

3xi =

∫

φ∗i (xi )Hi (xi )φi (xi ) d
3xi ,

or
T †
op Hi Top = Hi . (9)

◮ (8) and (9) imply that

[Top ,Hi ] = 0.

◮ In other words, as a consequence of crystal symmetry,
single-electron Hamiltonian commutes with all lattice
translation operators.



Translation Operators - VI

◮ Conclude that Hi , and set of all translation operators, Top ,
constitute set of mutually commuting operators.

◮ Thus, should be possible to find simultaneous eigenstates of
these operators.

◮ Let ψE (x) be spatial wavefunction of single-electron energy
eigenstate corresponding to energy E (i.e., Hi ψE = E ψE ).

◮ It follows that ψE (x) is also an eigenstate of Top : that is,

Top ψE (x) = γ ψE (x), (10)

where γ is eigenvalue.

◮ Given that Top depends on n1, n2, n3, we deduce that
γ = γ(n1, n2, n3).



Bloch’s Theorem - I

◮ Require single-electron wavefunction, ψE (x), to be properly
normalized, so

∫

|ψE (x)|2 d3x = 1. (11)

◮ Function ψE (x+ T) = Top ψE (x) = γ ψE (x) must also be
properly normalized, which, from (11), implies that

|γ|2 = 1.

◮ Hence, we can write
γ = e

iβ, (12)

where β is real.

◮ Given that γ = γ(n1, n2, n3), it follows that β = β(n1, n2, n3).



Bloch’s Theorem - II

◮ Let us successively apply two different lattice translation
operators to ψE (x).

◮ We get

T ′
op Top ψE (x) = T ′

op γ ψE (x) = γ T ′
op ψE (x) = γ γ′ ψE (x).

◮ But, we also know that T ′
op Top = T ′′

op.

◮ So,
T ′
op Top ψE (x) = T ′′

op ψE (x) = γ′′ ψE (x).

◮ Equating right-hand sides of previous two equations, we
deduce that

γ′′ = γ′ γ, (13)

where γ = γ(n1, n2, n3), γ
′ = γ(n′1, n

′
2, n

′
3), and

γ′′ = γ(n1 + n′1, n2 + n′2, n3 + n′3).



Bloch’s Theorem - III

◮ (12) and (13) imply that

β(n1 + n′1, n2 + n′2, n3 + n′3) = β(n1, n2, n3) + β(n′1, n
′
2, n

′
3).

◮ Only way previous equation can hold for all n1, n2, n3 is if

β = x n1 + y n2 + z n3,

where x , y , z are independent of n1, n2, n3.

◮ Without loss of generality, can set x = a · k, y = b · k,
z = c · k, because a, b, c are independent vectors.

◮ Hence,
β = k ·T, (14)

where T = n1 a+ n2 b+ n3 c is lattice translation vector
associated with Top(n1, n2, n3).



Bloch’s Theorem - IV

◮ (12) and (14) imply that

γ = e
i k·T, (15)

where k is constant vector that is independent of n1, n2, n3.

◮ Follows from (10) and (15) that

Top ψE (x) = ψE (x +T) = e
i k·T ψE (x). (16)

This result is known as Bloch’s theorem.

◮ Bloch’s theorem tells us that for every energy eigenfunction,
ψE (x), there exists a vector, k, known as wavevector, such
that previous equation satisfied for general translation
operator, Top.

◮ Hence, we can write

ψE (x) ≡ ψE ,k(x).



Bloch’s Theorem - V

◮ Note that (16) does not uniquely determine k. In other words,
for given ψE (x), there are many k vectors that satisfy (16).

◮ Let us define
uE ,k(x) = e

−i k ·x ψE ,k(x). (17)

◮ We have

Top uE ,k(x) = uE ,k(x+ T) = e
−i k ·(x+T) ψE ,k(x+ T).

◮ Making use of Bloch’s theorem, (16), we get

Top uE ,k(x) = e
−i k ·(x+T)

e
i k·TψE ,k(x) = e

−i k·x ψE ,k(x),

or, from (17),
Top uE ,k(x) = uE ,k(x).



Bloch’s Theorem - VI

◮ We deduce that uE ,k(x) is a periodic function that is invariant
under translation by T.

◮ (17) yields
ψE ,k(x) = e

i k·x uE ,k(x). (18)

◮ In other words, electronic wavefunction of energy eigenstate of
crystal has form of periodic function, uE ,k(x), modulated by
plane-wave envelope, e i k·x.



Reciprocal Lattice - I

◮ Let us search for a wavevector, G, that satisfies

e
iG·T = 1, (19)

where T = n1 a+ n2 b+ n3 c is a general lattice translation
vector.

◮ Given that
e
i θ = cos θ + i sin θ,

it is clear that (19) can only be satisfied if

G ·T = 2π n,

where n is an integer.



Reciprocal Lattice - II

◮ Thus, we require

n1G · a+ n2G · b+ n3G · c = 2π n. (20)

◮ Suppose that n2 = n3 = 0 and n1 is an arbitrary integer. (20)
yields

n1G · a = 2π n,

which can only be satisfied if

G · a = 2π na, (21)

where na is an integer.



Reciprocal Lattice - III

◮ Similar reasoning reveals that

G · b= 2π nb, (22)

G · c= 2π nc . (23)

◮ Let us write
G = na A+ nb B+ nc C. (24)

◮ (21)–(24) imply that

A · a = 2π, B · a = 0, C · a = 0, (25)

A · b = 0, B · b = 2π, C · b = 0, (26)

A · c = 0, B · c = 0, C · c = 2π. (27)



Reciprocal Lattice - IV

◮ It can be seen, by inspection, that (25)–(27) are satisfied by

A= 2π
b× c

a · (b× c)
, (28)

B= 2π
c× a

a · (b× c)
, (29)

C= 2π
a× b

a · (b× c)
. (30)

◮ Note that

G ·T = 2π (na n1 + nb n2 + nc n3) = 2π n.

◮ (24) and (28)–(30) define what is known as a reciprocal
lattice in k-space.

◮ G is known as a reciprocal lattice translation vector.

◮ A, B, and C are known as primitive reciprocal lattice
translation vectors.



Reciprocal Lattice - V

◮ Key property of vector G is e iG·T = 1.

◮ Because of this property, can use G to generate infinity of
wavevectors, k′, that are equivalent to any particular
wavevector, k:

k′ = k+ G.

◮ Recall, Bloch’s theorem, which states that translation of
ψE ,k(x) by vector T is equivalent to multiplication by phase
factor e i k·T.

◮ But,
e
i k′·T = e

i (k+G)·T = e
i k·T

e
iG·T = e

i k·T.

◮ So, translation of ψE ,k′(x) by vector T also results in
multiplication by factor e i k·T.



Reciprocal Lattice - VI

◮ By letting integers na, nb, and nc in (24) take any values, we
generate infinite set of wavevectors, k′, each of which is
equivalent to k.

◮ Let us denote set of equivalent wavevectors by {k′}.
◮ Any wavevector in {k′} is related to any other vector by some

reciprocal lattice translation vector, G.



Reciprocal Lattice - VII

◮ Consider cubic lattice in which inter-atomic spacing is d .

◮ Follows that

a = d ex , b = d ey , c = d ez .

◮ Easily seen from (28)–(30) that

A =
2π

d
ex , B =

2π

d
ey , C =

2π

d
ez .

◮ Thus, reciprocal lattice is also cubic.

◮ Lattice spacing in reciprocal space is inversely proportional to
lattice spacing in real space.



Reciprocal Lattice - VIII

◮ Consider cuboid lattice.

◮ Follows that

a = dx ex , b = dy ey , c = dz ez .

◮ Easily seen from (28)–(30) that

A =
2π

dx
ex , B =

2π

dy
ey , C =

2π

dz
ez .

◮ Thus, reciprocal lattice is also cuboid.

◮ Again, lattice spacing in reciprocal space is inversely
proportional to lattice spacing in real space.



Brillouin Zones - I

◮ Have seen that particular wavevector, k, is not unique.

◮ Can generate infinity of equivalent wavevectors, each
corresponding to different point in reciprocal space, via
k′ = k+ G.

◮ Choose to label each electronic wavefunction with smallest
wavevector in set of wavevectors that characterize function.

◮ Is there particular region of reciprocal space that contains all
of smallest wavevectors for particular crystal?



Brillouin Zones - II

◮ Because k is smallest vector in set {k′}, we know that
k ′ 2 ≥ k2 for any k′ in {k′}.

◮ So, if G is particular reciprocal translation vector then we need

(k− G)2 ≥ k2,

which implies that

k‖ ≤
1

2
G , (31)

where k‖ = k ·G/G is projection of k along direction of G.

◮ In other words, for k to be smallest vector in set {k′} its tip
must lie on small-k side of perpendicular bisector of any
possible reciprocal lattice translation vector, G.



Brillouin Zones - III

◮ Procedure to find region of reciprocal space in which smallest
k vectors reside:
1. Connect origin to nearest neighbors in reciprocal space by

smallest G vectors.
2. Draw perpendicular bisectors of G vectors.
3. Region enclosed by perpendicular bisectors (including origin) is

region in which smallest k vectors reside. This region known as
first Brillouin zone. (Figure is for square lattice.)



Brillouin Zones - IV

◮ Region of reciprocal space in which next smallest k vectors
reside is known as second Brillouin zone.

◮ Can find second Brillouin zone by drawing next smallest G
vectors and bisecting them. Region that lies within bisectors
(excluding first Brillouin zone) is second Brillouin zone.



Brillouin Zones - V

◮ Sections of second Brillouin zone can be mapped into
equivalent sections of first Brillouin zone by means of
displacement by appropriate G vectors.



Brillouin Zones - VI

◮ Can continue process to find third Brillouin zone, and so on



Brillouin Zones - VII

◮ Higher and higher order Brillouin zones clearly become more
and more fragmented.

◮ All Brillouin zones (in two dimensions) occupy same area in
reciprocal space (because they all have to map into first
Brillouin zone).



Brillouin Zones - VIII

◮ Of course, crystals are three dimensional, rather than two
dimensional.

◮ This means that perpendicular bisectors of G vectors are
planes, rather than lines.

◮ Planes enclose volumes, rather than areas, of reciprocal space.

◮ Easily appreciated that first Brillouin zone of cubic lattice is
cubic in shape.

◮ Moreover, each Brillouin zone occupies equal volume of
reciprocal space.



Brillouin Zones - IX

◮ Single-electron energy eigenstates have spatial wavefunctions,
ψE ,k(x), that satisfy Bloch’s theorem:

ψE ,k(x+ T) = e
i k·T ψE ,k(x).

◮ Each different k in first Brillouin zone corresponds to different
spatial electronic state.

◮ How many distinct spatial electronic states are there in first
Brillouin zone?

◮ If crystal is infinite in size then there are infinite number of
states.

◮ However, no real crystal is infinite in size.



Brillouin Zones - X

◮ Consider one-dimensional crystal consisting of N unit cells.

◮ Let d be spacing between adjacent lattice points.

◮ Length of crystal is L = N d .

◮ Let us demand that

ψE ,k(0) = ψE ,k(L). (32)

◮ Here, we are effectively taking finite size of crystal into
account by treating it as infinite crystal that is periodic with
periodicity length L.



Brillouin Zones - XI

◮ According to Bloch’s theorem,

ψE ,k(L) = ψE ,k(0 + L) = e
i k L ψE ,k(0). (33)

◮ (32) and (33) imply that e i k L = 1. So, k L must be some
multiple of 2π.

◮ Length of first Brillouin zone in k-space is 2π/d (i.e., distance
between adjacent points in reciprocal lattice).

◮ Hence, allowed values of k in first Brillouin zone are

k =
2π n

L
=

2π

d

n

N
, (34)

for −N/2 ≤ n ≤ +N/2.



Brillouin Zones - XII

◮ Thus, there are N distinct spatial electronic states in first
Brillouin zone.

◮ Argument can be extended to show that there are N distinct
spatial electronic states in every Brillouin zone.

◮ Argument can be further extended to show that there are also
N distinct spatial electronic states in every Brillouin zone for
two-dimensional and three-dimensional crystals containing N

unit cells.



Free-Electron Approximation - I

◮ Potential energy of electron in crystal is periodic function of x
that has singularities at nuclear sites.

◮ Predominant effect of potential energy is to keep electron
confined within crystal.

◮ As very crude approximation, let us ignore periodicity of
potential energy, and singularities, and regard crystal as
three-dimensional square well.

◮ We replace potential energy function with constant value that
is lower than potential energy outside crystal.

◮ This approach known as free-electron approximation.



Free-Electron Approximation - II

◮ Let us take V = 0 inside crystal, and V > 0 outside.

◮ Schrödinger’s equation inside crystal is that of free electron:

− ~
2

2me

∇2ψE (x) = E ψE (x).

◮ Solutions are
ψE (x) = A e

i k′·x, (35)

where

E =
~
2

2me

k ′ 2. (36)

◮ Here, A is normalization constant, and wavevector k′ is
related to linear momentum of electron via p = ~ k′.



Free-Electron Approximation - III

◮ (35) has form of Bloch wavefunction,

ψE ,k′(x) = e
i k′·x uE ,k′(x),

where uE ,k′(x) = A.

◮ No limit has been placed on the magnitude of k′, which is
known as extended-zone-scheme wavevector.

◮ However, we conventionally choose wavevector, k, appearing
in Bloch’s theorem, such that it lies in first Brillouin zone, in
which case it is known as reduced-zone-scheme wavevector.

◮ Of course, k = k′ − G, where G is appropriate reciprocal
lattice translation vector.



Free-Electron Approximation - IV

◮ Follows that
ψE ,k(x) = A e

iG·x
e
i k·x,

so uE ,k(x) = A e
iG·x.

◮ Furthermore,

E =
~
2

2me

|k+ G|2.



Free-Electron Approximation - V

◮ As example, consider one-dimensional crystal of lattice
spacing d containing N unit cells.

◮ Allowed values of k in first Brillouin zone are

k =
2π

d

m

N
,

for −N/2 ≤ m ≤ N/2.

◮ There are N such values. In limit N ≫ 1 they are very closely
spaced.

◮ To plot E versus k in reduced-zone scheme we plot

E =
~
2

2me

k ′ 2,

where

k = k ′ ± 2π

d
n′,

and n′ is chosen so as to ensure that −π/d ≤ k ≤ π/d .



Free-Electron Approximation - VI

◮ Helpful to write

k =
2π

d
k̂ ,

k ′ =
2π

d
k̂ ′,

E =
~
2 π2

2me d2
Ê .

◮ Follows that
Ê = 4 k̂ ′ 2.

◮ We shall employ this normalization scheme extensively in
following discussion.



Free-Electron Approximation - VII
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◮ Dashed curve shows Ê (k̂ ′). Solid curve shows Ê (k̂). Red lines
show boundaries of Brillouin zones.



Free-Electron Approximation - VIII

◮ In reduced-zone scheme there are infinite number of possible
energies associated with each k value in first Brillouin zone.

◮ Let us denote these energies the En(k) where E0 < E1 < E2,
et cetera.

◮ Quantum number n is called band index.

◮ The En(k) constitutes nth band of allowed electron energies.

◮ Each band contains N distinct spatial electron states. Hence,
according to Pauli exclusion principle, each band can
accommodate 2N electrons.



Free-Electron Approximation - IX
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Density of States - I

◮ In one-dimensional crystal, density of states as function of
wavevector denoted w(k).

◮ w(k) dk defined as number of unique electron states whose
wavevectors lies between k and k + dk .

◮ According to (34), spatial states are evenly spaced in k-space
with spacing ∆k = 2π/(N d).

◮ There are two unique electron states per unique spatial state.

◮ So,

w(k) dk =
2 dk

∆k
=

N d dk

π
,

giving

w(k) =
N d

π
=

L

π
, (37)

where L is length of crystal.



Density of States - II

◮ Density of states as function of energy denoted D(E ).

◮ D(E ) dE defined as number of unique electron states whose
energies lies between E and E + dE .

◮ In free electron approximation,

E =
~
2 k2

2me

. (38)

◮ So,
D(E ) dE = 2w(k) dk . (39)

◮ Factor of two arises because each value of E corresponds to
two values of k ; one positive, and one negative.



Density of States - III

◮ (37)–(39) yield

D(E ) =
L
√
2me

π ~
E−1/2. (40)

◮ Suppose that there are η electrons per unit cell, which implies
that there are ηN electrons in whole crystal.

◮ We need to put these electrons into lowest-energy available
unique electron states.

◮ Given that E ∝ k2 this implies putting electrons into states
with lowest values of k .

◮ Let us fill all states for which k ≤ kF .

◮ Follows that

2

∫ kF

0
w(k) dk = ηN . (41)



Density of States - IV

◮ (37) and (41) yield

kF =
π

2 d
η. (42)

Here, kF known as Fermi wavevector.

◮ Corresponding energy, which is known as Fermi energy, is

EF =
~
2 k 2

F

2me

=
~
2 π2

8me d2
η2. (43)

◮ Thus, all electron states with E ≤ EF are filled, and those
with E > EF are empty.

◮ In reality, probability of finding electron in state of energy E is

p(E ) =
1

e (E−EF )/(kB T ) + 1
.

However, given that EF ≫ kB T at room temperature, we
deduce that p ≃ 1 for E < EF , and p ≃ 0 for E > EF .



Density of States - V

◮ In terms of previous normalization,

ÊF =
η2

4
, (44)

D̂(Ê )=
N

Ê 1/2
,

which ensures that

∫ ÊF

0
D̂(Ê ) dÊ = N η.

◮ Note that properties of crystal effectively determined by
parameter η.

◮ Given that η is integer, conclude that Brillouin zones in 1-D
crystal either empty, half-full, or completely full.



Density of States - VI
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Density of States - VII
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Weak-Binding Approximation - I

◮ Let us now take into account electron potential energy, V (x).

◮ If potential energy sufficiently small then we can treat it as
perturbation to system.

◮ This approach known as weak-binding approximation.

◮ Let

ψ
(0)
E ,k(x) =

e
i k x

√
L
,

be our zeroth-order energy eigenstate, corresponding to energy

E0(k) =
~
2 k2

2me

.

◮ Note that
∫ L/2

−L/2

∣

∣

∣ψ
(0)
E ,k(x)

∣

∣

∣

2
dx = 1,

as required for proper normalization.



Weak-Binding Approximation - II

◮ Using standard perturbation theory, can write

ψE ,k(x) = ψ
(0)
E ,k(x) + Vk,k +

∑

k′ 6=k

Vk′,k ψ
(0)
E ,k(x)

E0(k)− E0(k ′)
, (45)

where

Vk′,k =

∫ L/2

−L/2
ψ
(0) ∗
E ,k′ (x)V (x)ψ

(0)
E ,k(x) dx ,

or

Vk′,k =
1

L

∫ L/2

−L/2
e
i (k−k′) x V (x) dx . (46)



Weak-Binding Approximation - III

◮ We know that V (x) is a periodic function of x with period d .
Thus,

V (x +md) = V (x), (47)

for any integer, m.

◮ Making a change of variable, (46) becomes

Vk′,k =
1

L

∫ L/2

−L/2
e
i (k−k′) (x+md) V (x +md) dx

= e
i (k−k′)md

∫ L/2

−L/2
e
i (k−k′) x V (x) dx

= e
i (k−k′)md Vk′,k .

Here, have assumed that md ≪ L.



Weak-Binding Approximation - IV

◮ Previous equation yields
[

1− e
i (k−k′)md

]

Vk′,k = 0.

◮ Conclude that Vk′,k = 0 unless

e
i (k−k′)md = 1. (48)

◮ However, (48) is definition of reciprocal lattice translation
vector.

◮ Follows that only states that are coupled to ψ
(0)
E ,k , according to

first-order perturbation theory, are states with wavevectors, k ′,
that differ from k by reciprocal lattice translation vectors.

◮ Note that

Vk,k =
1

L

∫ L/2

−L/2
V (x) dx =

1

d

∫ d/2

−d/2
V (x) dx ≡ V0,

is average (over unit cell) electron potential energy.



Weak-Binding Approximation - V

◮ (45) becomes

ψE ,k(x) = ψ
(0)
E ,k(x) +

∑

G 6=0

VG ψ
(0)
E ,k−G (x)

E0(k)− E0(k − G )
.

where G = n (2π/d), and

VG =
1

L

∫ L/2

−L/2
e
iG x V (x) dx .

◮ Given that V (x) and e
iG x are both periodic functions of x

with period d , can write

VG =
1

d

∫ d/2

−d/2
e
iG x V (x) dx .



Weak-Binding Approximation - VI

◮ Finally, to second-order in perturbation expansion,

E (k) = E0(k) + V0 +
∑

G 6=0

|VG |2
E0(k)− E0(k − G )

. (49)

◮ In order for perturbation theory not to break down, last term
on right-hand side of previous equation must be small
compared to first. In other words,

|VG | ≪
[

1− E0(k − G )

E0(k)

]1/2

=

[

1− (k − G )2

k2

]1/2

,

or

|VG | ≪
√

G (2 k − G )

|k | .



Weak-Binding Approximation - VII

◮ Deduce that, assuming VG sufficiently small, perturbation
theory can be safely used for electronic states for which k is
not close to G/2.

◮ Relative energies of such states only modified to second-order
in perturbation expansion, so they are essentially same as in
free-electron approximation.

◮ On other hand, perturbation theory fails for states with
k ≃ G/2, because e

i (k−G) x mixes strongly with e
i k x .

◮ Must treat such strongly-mixed states differently.



Weak-Binding Approximation - VIII

◮ Strongly-mixed states such that k = G/2 = n π/d , where n is
non-zero integer.

◮ Thus, strongly-mixed states correspond to k̂ = n/2.

◮ Clear from figure that strongly-mixed states lie at boundaries
of Brillouin zones.
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Weak-Binding Approximation - IX

◮ Consider strongly-mixed state with wavevectors k ≃ G/2 and
k ≃ k − G .

◮ Schrödinger’s equation is

(H − E )ψE (x) = 0,

where

H = − ~
2

2me

d2

dx2
+ V (x),

and

ψE (x) ≃
a√
L
e
i k x +

b√
L
e
i k′ x .

◮ Note that strongly-mixed states are almost degenerate.



Weak-Binding Approximation - X

◮ Previous three equations yield

a√
L

(

~
2 k2

2me

+ V − E

)

e
i k x +

b√
L

(

~
2 k ′2

2me

+ V − E

)

e
i k′ x = 0.

◮ Operating on previous equation with

(1/L)
∫ L/2
−L/2 e

−i k x (· · · ) dx and (1/L)
∫ L/2
−L/2 e

−i k′ x (· · · ) dx , we
get

(

Hk,k − E , Hk,k′

Hk′,k , Hk′,k′ − E

)(

a

b

)

= 0. (50)

◮ Here,

Hk,k =
~
2 k2

2me

+ V0, Hk,k′ = V−G = V ∗
G ,

Hk′,k = VG , Hk′,k′ =
~
2 k ′2

2me

+ V0.



Weak-Binding Approximation - XI

◮ Setting determinant of matrix in (50) to zero, we get

E =
1

2

[

~
2 k2

2me

+
~
2 k ′2

2me

]

+ V0 ±
1

2

√

[

~2 k2

2me

− ~2 k ′2

2me

]2

+ 4 |VG |2.

◮ At Brillouin zone boundary, we have |k | = |k ′| = G/2, and

E =
~
2 k2

2me

+ V0 ± |VG |.

◮ Thus, energies of two strongly-mixed states at zone boundary
are split about average value, ~2 k2/2me + V0, by energy
separation 2 |VG |.

◮ Energy separation is known as band-gap, because it separates
two free-electron bands,



Weak-Binding Approximation - XII

◮ Figure shows band-gap induced between first and second
bands.
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Weak-Binding Approximation - XIII

◮ Consider one-dimensional crystal with one electron per unit
cell; that is, η = 1.

◮ According to (44), normalized Fermi energy is ÊF = 0.25.
Hence, first band is half-full.

◮ Consequently, exist empty states infinitesimally close in energy
to highest occupied state.

◮ Infinitesimal increment of energy (e.g., via application of small
electric field) can excite electron to one of these empty states.

◮ Crystal that exhibits such behavior is said to exhibit metallic
behavior, and is, in fact, an electrical conductor.



Weak-Binding Approximation - XIV

◮ Consider one-dimensional crystal with two electrons per unit
cell; that is, η = 2.

◮ According to (44), normalized Fermi energy is ÊF = 1. Hence,
first band is completely filled.

◮ Consequently, because of presence of band-gap, there are no
empty states infinitesimally close in energy to highest
occupied state.

◮ Crystal that exhibits such behavior is said to exhibit
nonmetallic behavior, and is, in fact, an electrical insulator.



Weak-Binding Approximation - XV

◮ According to (39),

D(E ) =
2w(k)

dE/dk
.

◮ However, clear from previous figure that dE/dk → 0 as edges
of band-gap approached.

◮ Suggests that density of states, D(E ), becomes infinite as
edges of band-gap approached. (Obviously, D(E ) = 0 inside
band-gap.)



Kronig-Penny Model - I

◮ As specific example, consider one-dimensional crystal in which
V (x) takes form of infinite series of square wells.

◮ This example is known as Kronig-Penny model.

◮ Each square well of width d − s and depth U.

◮ Length of primitive cell (i.e., periodicity distance) is d .

V = U

d

d− s s

V = 0 x
0



Kronig-Penny Model - II

◮ Only need to solve Schrödinger’s equation in interval
0 ≤ x ≤ d , because if we have wavefunction, ψE ,k(x), in this
interval then Block’s theorem, (16), yields

ψE ,k(x + n d) = e
i k n d ψE ,k(x). (51)

◮ In interval 0 ≤ x ≤ d − s, in which V = 0, Schrödinger’s
equation yields

~
2

2me

d2ψE ,k

dx2
+ E ψE ,k = 0.

◮ Solution is

ψE ,k(0 ≤ x ≤ d − s) = A e
iα x + B e

−iα x , (52)

where

α =

√

2me E

~2
.



Kronig-Penny Model - III

◮ According to (51),

ψE ,k(d ≤ x ≤ 2 d − s) =
[

A e
iα (x−d) + B e

−iα (x−d)
]

e
i k d ,

(53)

◮ In interval d − s ≤ x ≤ d , in which V = U, Schrödinger’s
equation yields

~
2

2me

d2ψE ,k

dx2
+ (E − U)ψE ,k = 0.

◮ Solution is

ψE ,k(d − s ≤ x ≤ d) = C e
i β x + D e

−i β x , (54)

where

β =

√

2me (E − U)

~2
.



Kronig-Penny Model - IV

◮ Need to match ψE ,k(x), and its first derivative, at x = d − s.

◮ According to (52) and (54),

A e
iα (d−s) + B e

−iα (d−s)= C e
iβ (d−s) + D e

−i β (d−s),
(55)

Aα e
iα (d−s) − B α e

−iα (d−s)= C β e iβ (d−s) − D β e−i β (d−s).
(56)



Kronig-Penny Model - V

◮ Need to match ψE ,k(x), and its first derivative, at x = d .

◮ According to (53) and (54),

A e
i k d + B e

i k d = C e
i β d +D e

i β d , (57)

Aα e
i k d − B α e

i k d = C β e
iβ d − D β e−i β d . (58)



Kronig-Penny Model - VI

◮ Eliminating A and B between (55)–(58), we obtain

C (α+ β) e i β d
{

e
i [k d−α (d−s)−β s] − 1

}

= D (α− β) e−i β d
{

1− e
i [k d−α (d−s)+β s]

}

,

C (α− β) e i β d
{

e
i [k d+α (d−s)−β s] − 1

}

= D (α+ β) e−i β d
{

1− e
i [k d+α (d−s)+β s]

}

.



Kronig-Penny Model - VII

◮ Eliminating C and D between previous two equations, and
rearranging, we obtain dispersion relation

cos(k d) = cos[α (d − s)] cos(β s)−
(

α2 + β2

2αβ

)

sin[α (d − s)] sin(β s).

(59)

◮ Dispersion relation specifies wavevector, k , as function of
energy, E (because α and β are functions of E ).

◮ If E < U then β is imaginary. In this case, more convenient to
write dispersion relation in form

cos(k d)= cos[α (d − s)] cosh(|β| s)

−
(

α2 − |β|2
2α |β|

)

sin[α (d − s)] sinh(|β| s). (60)



Kronig-Penny Model - VIII

◮ Adopting usual normalizations, dispersion relation becomes

cos(2π k̂) = F (Ê ), (61)

where −1/2 ≤ k̂ ≤ 1/2, and

F (Ê ) = cos[α̂ (1− ŝ)] cos(β̂ ŝ)−
(

α̂2 + β̂ 2

2 α̂ β̂

)

sin[α̂ (1− ŝ)] sin(β̂ ŝ)

for Ê > Û, and

F (Ê ) = cos[α̂ (1− ŝ)] cosh(β̂ s)−
(

α̂2 − β̂ 2

2 α̂ β̂

)

sin[α̂ (1 − ŝ)] sinh(β̂ ŝ)

for Ê < Û, where

α̂= π Ê 1/2,

β̂= π |Ê − Û|1/2,

ŝ =
s

d
.



Kronig-Penny Model - IX

◮ Figure shows F (Ê ) for Û = 2 and ŝ = 0.2. Given that
| cos θ| ≤ 1, it is clear from (61) that some ranges of energies
are disallowed. These are band-gaps.
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Kronig-Penny Model - X

◮ Figure shows band structure deduced from previous figure.
Band-gaps are clearly visible.
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Ê

Band̂1
Band̂2
Band̂3
Band̂4



Kronig-Penny Model - XI

◮ Can estimate band-gap sizes from previous weak-binding
theory, according to which extents of band-gaps are 2 |VG |,
where

VG =
1

d

∫ d/2

−d/2
e
iG x V (x) dx ,

and G = n 2π/d .

◮ Easily seen that for Kronig-Penney model,

|VG | = U
| sin(n π ŝ)|

n π
.

◮ Thus, our estimate for width of nth band-gap (first gap
separates Band 1 from Band 2, et cetera) is

∆En = 2U
| sin(n π ŝ)|

n π
. (62)



Kronig-Penny Model - XII

◮ Note that, in general, ∆En decreases with increasing n.

◮ In other words, high-order band-gaps tend to be smaller in
extent than low-order band-gaps.



Kronig-Penny Model - XIII

◮ Note that each band still contains 2N electron states
(because this property is determined by the extent of band in
k-space, which has not changed).

◮ If there are η electron per unit cell then normalized Fermi
wavevector is k̂F = η/4.

◮ Defining
∫ ÊF

0
D̂(Ê ) dÊ = ηN,

where D̂(Ê ) is normalized density of states, and ÊF is
normalized Fermi energy, it follows that

D̂(Ê ) =
4N

dÊ/dk̂
.



Kronig-Penny Model - XIV

◮ Figure shows density of states deduced from previous figure.
Can be seen that density of states approximates that predicted
by free-electron theory in middle of bands, goes to infinity at
edges of band-gaps, and is zero within band-gaps.
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Two-Dimensional Crystals - I

◮ Let us consider two-dimensional crystals.

◮ For sake of definiteness, and simplicity, we restrict our
attention to a two-dimensional crystal with a square lattice of
interatomic spacing d .

◮ Reciprocal lattice is also square, with grid spacing 2π/d .

◮ Suppose that crystal lies in x-y plane with its symmetry axes
aligned with coordinate axes.



Two-Dimensional Crystals - II

◮ Figure shows first four Brillouin zones of square lattice in
extended-zone scheme. (Red: Zone 1; Blue: Zone 2; Green:
Zone 3; Magenta: Zone 4.)
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Two-Dimensional Crystals - III

◮ Note that, in previous figure, there are lines along which two
zones touch. As before, in weak-binding approximation, would
expect strong mixing of two states along such lines, giving rise
to band-gaps.

◮ There are also corners along which four zones touch. By
analogy, in weak-binding approximation, would expect strong
mixing of four states at such points.



Two-Dimensional Crystals - IV

◮ Let us commence our analysis by adopting free-electron
approximation.

◮ Wavevector of electron is written

k = kx ex + ky ey .

◮ Energy of electron is

E =
~
2 k2

2me

. (63)

◮ In terms of standard normalizations,

Ê = 4 k̂2 = 4 (k̂2x + k̂2y ).



Two-Dimensional Crystals - V

◮ In extended-zone scheme, constant energy contours are circles
in reciprocal space.
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Two-Dimensional Crystals - VI

◮ In restricted-zone scheme, need to map sections of higher
Brillouin zones into first Brillouin zone. Each section
transports its constant energy contours.



Two-Dimensional Crystals - VII

◮ Constant energy contours in first Brillouin zone are,
unsurprisingly, circles. Lowest energy state lies at center of
zone.
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Two-Dimensional Crystals - VIII

◮ Constant energy contours in second Brillouin zone are arcs of
circles. Highest energy state lies at center of zone.
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Two-Dimensional Crystals - IX

◮ Constant energy contours in third Brillouin zone are more
convoluted. Highest energy state lies at center of zone.
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Two-Dimensional Crystals - X

◮ Constant energy contours in fourth Brillouin zone are really
convoluted. Highest energy state lies at center of zone.
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Two-Dimensional Crystals - XI

◮ An alternative way of visualizing energies of Brillouin zones is
to plot energies along a path in reciprocal space. Conventional
path is shown below. It starts from center of first Brillouin
zone, goes to edge of zone, runs along edge until it get to
corner, and goes back to center.
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Two-Dimensional Crystals - XII

◮ Figure shows band energies as function of path length along
path show in previous slide. Red, blue, yellow vertical lines
indicate points (k̂x , k̂y ) = (0, 0), (1/2, 0), (1/2, 1/2),
respectively.
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Two-Dimensional Crystals - XIII

◮ Let N denote number of primitive unit cells in crystal.

◮ Let w(k) dkx dky be number of states whose wavevectors lie
between kx and kx + dkx and ky and ky + dky .

◮ Area of first Brillouin zone is (2π/d)2.

◮ Know that there are N distinct spatial states—and, hence,
2N, distinct electron states—in first Brillouin zone.

◮ Hence,

w(k) =
2N

(2π/d)2
=

2N d2

(2π)2
. (64)



Two-Dimensional Crystals - XIV

◮ Let D(E ) dE be number of distinct electron states whose
energies lie between E and E + dE .

◮ In two dimensions, there is annular area in k-space, 2π k dk ,
corresponding to energy interval dE .

◮ Thus,
D(E ) dE = w(k) 2π k dk ,

or

D(E ) = w(k) 2π k
dk

dE
.

◮ Making use of (63) and (64), we obtain

D(E ) =
N me d

2

π ~2
. (65)



Two-Dimensional Crystals - XV

◮ Note that, unlike one-dimensional case, in which
D(E ) ∝ E−1/2, two-dimensional density of states is
independent of energy.

◮ (65) includes contributions from all bands.

◮ Let D(n)(E ) be density of states in nth band.

◮ Given that density of states is uniform in k-space, D(n)(E ) dE
is proportional to area of annular region of radius k(E ) and
thickness dk = (dk/dE ) dE that lies in nth Brillouin zone.
Area of part of annular region proportional to product of its
infinitesimal thickness and its arc length.

◮ Hence,
D(n)(E ) = fn(E )D(E ). (66)

where fn(E ) is fraction of circumference of circle of radius
k(E ) =

√

2me E/~2 that lies in nth Brillouin zone.



Two-Dimensional Crystals - XVI

◮ Perusal of Brillouin zone diagram leads to schematic density
of states diagram shown below.
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Ê

n = 1 n = 2

n = 4

n = 3



Two-Dimensional Crystals - XVII

◮ In one dimension, various bands do not overlap in energy
(even in free-electron approximation).

◮ In two dimensions, bands overlap in energy.

◮ Expect all electron states whose energy is less than Fermi
energy, EF , to be occupied.

◮ All of these states lie within Fermi surface in reciprocal space.

◮ In free-electron approximation, Fermi surface is a circle of
radius kF , where kF is Fermi wavevector.



Two-Dimensional Crystals - XVIII

◮ Suppose that there are η electrons per unit cell.

◮ Region within Fermi surface must contain ηN electron states.

◮ So,
π k 2

F w(k) = ηN ,

where we have made use of fact that w(k) is uniform.

◮ Using (64), we obtain

kF =

√

η

2π

2π

d
.

◮ Fermi energy is

EF =
~
2 k2F
2me

=
η

2π

~
2

2me

(

2π

d

)2

.



Two-Dimensional Crystals - XIX

◮ In terms of usual normalizations,

k̂F =

√

η

2π
,

ÊF =
2 η

π
.



Two-Dimensional Crystals - XX

◮ Figure shows Fermi surfaces (in free-electron approximation)
for η = 1, 2, 3, 4, 5, and 6.
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Two-Dimensional Crystals - XXI

◮ Figure shows Fermi surfaces (in free-electron approximation)
in first Brillouin zone. Black, red, green surfaces correspond to
η = 1, 2, 3. Occupied states lie inside surfaces and boundary.
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Two-Dimensional Crystals - XXII

◮ Figure shows Fermi surfaces (in free-electron approximation)
in second Brillouin zone. Red, green, blue, yellow, cyan
surfaces correspond to η = 2, 3, 4, 5, 6. Occupied states lie
between surfaces and boundary.
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Two-Dimensional Crystals - XXIII

◮ Figure shows Fermi surfaces (in free-electron approximation)
in third Brillouin zone. Blue, yellow, cyan surfaces correspond
to η = 4, 5, 6. Occupied states lie between surfaces and
boundary.
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Two-Dimensional Crystals - XXIV

◮ Figure shows Fermi surfaces (in free-electron approximation)
in fourth Brillouin zone. Blue, yellow, cyan surfaces
correspond to η = 4, 5, 6. Occupied states lie between
surfaces and boundary.
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Two-Dimensional Crystals - XXV

◮ First Brillouin zone is partially occupied for η < 4, and fully
occupied for η ≥ 4.

◮ Second Brillouin zone is empty for η = 1, and partially
occupied for 2 ≤ η ≤ 6.

◮ Third and fourth Brillouin zones are empty for η < 4 and
partially occupied for 4 ≤ η ≤ 6.



Two-Dimensional Crystals - XXVI

◮ In weak-binding approximation, properly normalized
zeroth-order states are

ψ
(0)
E ,k(x) =

e
i k·x

√
A
,

corresponding to energy

E0(k) =
~
2 |k|2
2me

.

where A = N d2 is area of crystal.



Two-Dimensional Crystals - XXVII

◮ Matrix elements of perturbing potential are

Vk′,k =

〈

e
−i k′·x

√
A

∣

∣

∣

∣

∣

V (x)

∣

∣

∣

∣

e
i k·x

√
A

〉

.

◮ Matrix elements only nonzero if

k− k′ = G.

◮ Denote nonzero matrix elements as

VG =
1

d2

∫ d/2

−d/2

∫ d/2

−d/2
e
i (Gx x+Gy y) V (x , y) dx dy .



Two-Dimensional Crystals - XXVIII

◮ Strongly-mixed states are those with wavevectors close to
Brillouin zone boundaries.

◮ All other states can be dealt with using perturbation theory.

◮ At boundary between two Brillouin zones there are two
strongly-mixed states. Calculation of induced band-gap is
analogous to that in one-dimensional crystal.

◮ At boundary between four Brillouin zones there are four
strongly-mixed states.

◮ Let us examine this case.



Two-Dimensional Crystals - XXIX

◮ Consider corner of first Brillouin zone, k̂ = (1/2, 1/2).

◮ At this point, four Brillouin zones touch, so four free-electron
states are strongly mixed.

◮ These states have normalized wavevectors

k̂ = (1/2, 1/2), (1/2,−1/2), (−1/2, 1/2), (−1/2,−1/2).

◮ Normalized reciprocal lattice translation vectors connecting
these values of k̂ are

Ĝ = (1, 0), (0, 1), (1, 1), (−1, 1),

and their negatives.



Two-Dimensional Crystals - XXX

◮ If we denote normalized reciprocal lattice translation vectors
as Ĝ = (m, n) then associated normalized matrix elements are

V̂m,n =

∫ 1/2

−1/2

∫ 1/2

−1/2
e
i 2π (m x̂+n ŷ) V̂ (x̂ , ŷ) dx̂ dŷ .

◮ Let us write normalized wavefunction as normalized linear
combination of four strongly-coupled states:

ψ̂E (x̂) =
∑

i=1,4

ai ψ̂
(0)
E ,i (x̂).

Here, i = 1, 2, 3, 4 corresponds to k̂ = (1/2, 1/2), (1/2,−1/2),
(−1/2, 1/2), (−1/2,−1/2).



Two-Dimensional Crystals - XXXI

◮ Normalized Hamiltonian is

Ĥ = −∇̂2

π2
+ V̂ (x̂ , ŷ). (67)

◮ Energy eigenvalue problem yields

∑

j=1,4

Ĥij aj = Ê ai , (68)

where
Ĥij =

〈

ψ̂
(0)
E ,i (x̂)

∣

∣

∣
Ĥ

∣

∣

∣
ψ̂
(0)
E ,j(x̂)

〉

. (69)



Two-Dimensional Crystals - XXXII

◮ (67)–(69) lead to determinant equation

|Ĥij − Ê δij | = 0,

where
∣

∣

∣

∣

∣

∣

∣

∣

∣

∣

4 k̂2 − Ê ′, V̂0,−1, V̂−1,0, V̂−1,−1

V̂0,1, 4 k̂2 − Ê ′, V̂−1,1, V̂−1,0

V̂1,0, V̂1,−1, 4 k̂2 − Ê ′, V̂0,−1

V̂1,1, V̂1,0, V̂0,1, 4 k̂2 − Ê ′

∣

∣

∣

∣

∣

∣

∣

∣

∣

∣

= 0, (70)

and Ê ′ = Ê − V̂0,0.



Two-Dimensional Crystals - XXXIII

◮ Now,

V̂m,n =

∫ 1/2

−1/2

∫ 1/2

−1/2
e
i 2π (m x̂+n ŷ) V̂ (x̂ , ŷ) dx̂ dŷ .

◮ However, because of square symmetry of crystal,

V̂ (−x̂ , ŷ )= V̂ (x̂ , ŷ),

V̂ (x̂ ,−ŷ)= V̂ (x̂ , ŷ),

V̂ (ŷ , x̂)= V̂ (x̂ , ŷ).

◮ Follows that

V̂m,n =

∫ 1/2

−1/2

∫ 1/2

−1/2
cos(2πm x̂) cos(2π n ŷ) V̂ (x̂ , ŷ) dx̂ dŷ .



Two-Dimensional Crystals - XXXIV

◮ Hence,

V̂1,0 = V̂0,−1 = V̂−1,0 = V̂0,1≡ V̂1,

V̂1,1 = V̂1,−1 = V̂−1,−1 = V̂−1,1≡ V̂2.

◮ Thus, (70) reduces to

∣

∣

∣

∣

∣

∣

∣

∣

∣

∣

−E , V̂1, V̂1, V̂2

V̂1, −E , V̂2, V̂1

V̂1, V̂2, −E , V̂1

V̂2, V̂1, V̂1, −E

∣

∣

∣

∣

∣

∣

∣

∣

∣

∣

= 0, (71)

where E = Ê − V̂0,0 − 4 k̂2.



Two-Dimensional Crystals - XXXV

◮ Multiplying out determinant equation (71), we obtain

E 4 − 2 (2 V̂ 2
1 + V̂ 2

2 ) E 2 − 8 V̂ 2
1 V̂2 E + V̂ 2

2 (−4 V̂ 2
1 + V̂ 2

2 ) = 0.

◮ Previous equation factorizes to give

(E + V̂2)
2 (E − V̂2 + 2 V̂1) (E − V̂2 − 2 V̂1) = 0.

◮ Thus, energy eigenvalues are

Ê1 = 4 k̂ 2 + V̂0,0 + V̂2 + 2 V̂1, (72)

Ê2 = 4 k̂ 2 + V̂0,0 − V̂2, (73)

Ê3 = 4 k̂ 2 + V̂0,0 − V̂2, (74)

Ê4 = 4 k̂ 2 + V̂0,0 + V̂2 − 2 V̂1. (75)



Two-Dimensional Crystals - XXXVI

◮ Generally speaking, we expect |V2| < |V1|. In other words, we
expect matrix elements corresponding to longer G vectors to
be smaller.

◮ Hence, (72)–(75) indicate that, in weak-binding
approximation, degeneracy of energies of four Brillouin zones
that meet at k̂ = (1/2, 1/2) is lifted such that Ê1 and Ê4

straddle two remaining degenerate energies, Ê2 and Ê3.



Two-Dimensional Crystals - XXXVII

◮ Let us now try to solve general energy eigenvalue problem.

◮ Normalized wavefunction takes form

ψ̂(x̂ , ŷ) =
∑

nx ,ny

anx ,ny e
i 2π (nx+k̂x ) x̂ e

i 2π (ny+k̂y ) ŷ ,

where nx , ny are integers.

◮ Previous expression can also be written

ψ̂(x̂ , ŷ) = e
i (k̂x x̂+k̂y ŷ) u(x̂ , ŷ), (76)

where
u(x̂ , ŷ) =

∑

nx ,ny

anx ,ny e
i 2π (nx x̂+ny ŷ).



Two-Dimensional Crystals - XXXVIII

◮ (76) accords with Block theorem, because u(x̂ , ŷ) is periodic
function with same period of crystal: i.e.,
u(x̂ + 1, ŷ) = u(x̂ , ŷ + 1) = u(x̂ , ŷ).

◮ Normalized Hamiltonian is

Ĥ =
∇̂2

π2
+ V̂ (x̂ , ŷ ).

◮ So, energy eigenvalue problem becomes
∑

n′x ,n
′

y

Ĥnx ,ny ;n′x ,n
′

y
an′x ,n′y = Ê anx ,ny . (77)

◮ Here,

Ĥnx ,ny ;n′x ,n
′

y
=

∫ 1/2

−1/2

∫ 1/2

−1/2
e
−i 2π [(nx+k̂x ) x̂+(ny+k̂y ) ŷ ] Ĥ

×e
i 2π [(n′x+k̂x ) x̂+(n′y+k̂y ) ŷ ] dx̂ dŷ .



Two-Dimensional Crystals - XXXIX

◮ Easily seen that

Ĥnx ,ny ;n′x ,n
′

y
= Ê

(0)
ny ,ny δnx ,n′x δny ,n′y + V̂nx ,ny ;n′x ,n

′

y
, (78)

where
Ê
(0)
ny ,ny = 4

[

(nx + k̂x)
2 + (ny + k̂y )

2
]

, (79)

and

V̂nx ,ny ;n′x ,n
′

y
=

∫ 1/2

−1/2

∫ 1/2

−1/2
e
i 2π[(n′x−nx ) x̂+(n′y−ny ) ŷ] V̂ (x̂ , ŷ) dx̂ dŷ .

(80)



Two-Dimensional Crystals - XL

◮ Let us implement two-dimensional Kronig-Penney model in
which

V̂ (x̂ , ŷ) =

{

0 |x̂ | < (1/2) (1 − ŝ), |ŷ | < (1/2) (1 − ŝ)

Û otherwise
.

(81)

◮ Thus, each unit cell occupied by square potential well, of
depth −Û that occupies area fraction (1− ŝ)2 of cell.

◮ (80) and (81) yield

V̂nx ,ny ;n′x ,n
′

y
= Û

{

ŝ sinc[π (ny − n′y ) ŝ] δnx ,n′x

+ ŝ sinc[π (nx − n′x) ŝ ] δny ,n′y

−ŝ 2
sinc[π (nx − n′x) ŝ ] sinc[π (ny − n′y ) ŝ]

}

.

(82)



Two-Dimensional Crystals - XLI

◮ (77), (78), (79), and (82) constitute matrix eigenvalue
problem that can easily be solved numerically.

◮ In following, show results for Û = 1, ŝ = 0.2, −7 ≤ nx ≤ +7,
and −7 ≤ ny ≤ +7.

◮ Start by calculating energy eigenvalues along path in
reciprocal space specified below.

(0,0) (1/2,0)

(1/2,1/2)

k̂y

k̂x



Two-Dimensional Crystals - XLII

◮ Figure shows band energies as function of path length along
path show in previous slide. Red, blue, yellow vertical lines
indicate points (k̂x , k̂y ) = (0, 0), (1/2, 0), (1/2, 1/2),
respectively.
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Two-Dimensional Crystals - XLIII

◮ Previous figure shows induced band-gaps [e.g., between first
and second band along path (1/2, 0) to (1/2, 1/2)].

◮ At point (1/2, 1/2), where four Brillouin zones touch, there
are indeed two bands that straddle two degenerate bands, as
predicted by our analysis.

◮ Note that, unlike in one-dimensional case, there are no values
of Ê (above V̂0,0;0,0) for which no electronic states exist.



Two-Dimensional Crystals - XLIV

◮ Constant energy contours in first Brillouin zone are similar to
those in free-electron approximation, except that contours
modified to meet zone boundaries at right-angles.
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Two-Dimensional Crystals - XLV

◮ Likewise for second Brillouin zone.
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Two-Dimensional Crystals - XLVI

◮ Likewise for third Brillouin zone.
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Two-Dimensional Crystals - XLVII

◮ Likewise for fouth Brillouin zone.
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Two-Dimensional Crystals - XLVIII

◮ Figure shows Fermi surfaces in first Brillouin zone. Black, red,
surfaces correspond to η = 1, 2. Occupied states lie inside
surfaces and boundary.
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Two-Dimensional Crystals - XLIX

◮ Figure shows Fermi surfaces in second Brillouin zone. Red,
green, blue, yellow, cyan surfaces correspond to
η = 2, 3, 4, 5, 6. Occupied states lie between surfaces and
boundary.
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Two-Dimensional Crystals - L

◮ Figure shows Fermi surfaces in third Brillouin zone. Blue,
yellow, cyan surfaces correspond to η = 4, 5, 6. Occupied
states lie between surfaces and boundary.
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Two-Dimensional Crystals - LI

◮ Figure shows Fermi surfaces in fourth Brillouin zone. Blue,
yellow, cyan surfaces correspond to η = 4, 5, 6. Occupied
states lie between surfaces and boundary.
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Two-Dimensional Crystals - LII

◮ Figure illustrates how density of states of first four bands is
modified from free-electron prediction in weak-binding
approximation.
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