
08 - Two-Electron Atoms

◮ Aim of Section:
◮ Analyze electron configurations of atom/ions that consist of

two electrons orbiting atomic nucleus. Applications include
Helium atom.



Identical Particles - I

◮ Consider a system consisting of two identical particles.

◮ Instantaneous spatial state of system is specified by spatial
wavefunction ψ(x1, x2, t). Here, x1 and x2 are position vectors
of two particles.

◮ Wavefunction tells us that probability of finding first particle
between x1 and x1 + d3x1, and second between x2 and
x2 + d3x2, at time t, is |ψ(x1, x2, t)| 2 d3x1 d

3x2.

◮ However, because particles are identical, this probability must
be same as probability of finding first particle between x2 and
x2 + d3x2, and second between x1 and x1 + d3x1, at time t.
(Because, in both cases, result of measurement is exactly
same).



Identical Particles - II

◮ Hence, we conclude that

|ψ(x1, x2, t)| 2 = |ψ(x2, x1, t)| 2,

or
ψ(x1, x2, t) = e iϕ ψ(x2, x1, t),

where ϕ is a real constant.

◮ However, if we swap labels on particles 1 and 2 (which are,
after all, arbitrary for identical particles), and repeat
argument, we also conclude that

ψ(x2, x1, t) = e iϕ ψ(x1, x2, t).

◮ Hence,
e 2 iϕ = 1.

◮ Only solutions to previous equation are ϕ = 0 and ϕ = π.



Identical Particles - III

◮ Thus, we infer that, for a system consisting of two identical
particles, wavefunction must be either symmetric or
anti-symmetric under interchange of particle labels.

◮ That is, either

ψ(x2, x1, t) = +ψ(x1, x2, t),

or
ψ(x2, x1, t) = −ψ(x1, x2, t).

◮ Previous argument can easily be extended to systems
containing more than two identical particles.

◮ Conclude that wavefunction of system consisting of many
identical particles must be either symmetric or anti-symmetric
with respect to interchange of any two particle labels.



Identical Particles - IV

◮ Question of whether wavefunction of a system containing
many identical particles is symmetric or anti-symmetric under
interchange of labels of any two particles is determined by
nature of particles themselves.

◮ Systems of identical particles that possess integer spin have
wavefunctions that are symmetric under label interchange,
and are called bosons. For instance, photons are bosons.

◮ Systems of identical particles that possess half-integer spin
have wavefunctions that are anti-symmetric under label
interchange, are are called fermions. For instance, electrons,
protons, and neutrons are fermions.

◮ Proof of so-called spin statistics theorem (that integer/
half-integer spin particles have symmetric/anti-symmetric
wavefunctions under label interchange) is very complicated,
and requires relativistic quantum field theory.



Two-Electron States - I

◮ Consider atom/ion consisting of two electrons orbiting an
atomic nucleus (e.g., He, Li+, Be++).

◮ Electrons are spin-1/2 particles, and are, therefore, fermions.

◮ Let |1, 2〉 be energy eigenstate of system, where 1, 2 are
electron labels.

◮ A simple generalization of previous arguments tells us that we
require

|2, 1〉 = −|1, 2〉. (1)

◮ However,
|1, 2〉 = ψ(x1, x2)χ(1, 2),

where ψ(x1, x2) is a two-particle spatial wavefunction (which
tells us probable locations of two electrons in space), and
χ(1, 2) is a two-particle spinor (which tells us probable spin
states of electrons).



Two-Electron States - II

◮ (1) implies that either

ψ(x2, x1)= +ψ(x1, x2),

χ(2, 1) = −χ(1, 2),

or

ψ(x2, x1)= −ψ(x1, x2),
χ(2, 1) = +χ(1, 2),

◮ In other words, in order to ensure that total quantum state is
anti-symmetric under label interchange, either spatial
wavefunction is symmetric and spinor is anti-symmetric, or
vice versa.



Two-Electron States - III

◮ When spin-1/2 is added to spin-1/2, result is either spin-0 or
spin-1.

◮ There is one spin-0 state, known as singlet state.

◮ Singlet spinor takes form

χsinglet(1, 2) =
1√
2
(χ

(1)
+ χ

(2)
−

− χ
(1)
−
χ
(2)
+ ).

◮ Here, arguments of spinor are electron labels.

◮ Moreover, χ
(1)
+ represents electron 1 in spin-up state, et

cetera.

◮ Note that, in singlet state, if measurement of Sz of one
electron yields result ±~/2 then simultaneous measurement of
Sz for other electron necessarily yields result ∓~/2.



Two-Electron States - IV

◮ There are three spin-1 states, known as triplet states.

◮ Triplet spinor takes form

χtriplet(1, 2; 1) = χ
(1)
+ χ

(2)
+ ,

χtriplet(1, 2; 0) =
1√
2
(χ

(1)
+ χ

(2)
−

+ χ
(1)
−
χ
(2)
+ ),

χtriplet(1, 2;−1) = χ
(1)
−
χ
(2)
−
.

◮ Here first two arguments of spinor are electron labels.

◮ Third argument is conventional quantum number measuring
projection of total spin along z-axis.



Two-Electron States - V

◮ Note that

χsinglet(2, 1) = −χsinglet(1, 2),

χtriplet(2, 1;mS )= +χtriplet(1, 2;mS ),

where mS = 0,±1.

◮ Thus, singlet spinor is anti-symmetric with respect to
interchange of electron labels. So, corresponding spatial
wavefunction must be symmetric.

◮ Likewise, triplet spinor is symmetric with respect to
interchange of electron labels. So, corresponding spatial
wavefunction must be anti-symmetric.



Two-Electron States - VI

◮ Symmetry requirements imply that spin-0 quantum state
takes form

|1, 2〉singlet = ψa(x1)ψa(x2)χsinglet(1, 2), (2)

or

|1, 2〉singlet =
1√
2
[ψa(x1)ψb(x2) + ψb(x1)ψa(x2)]χsinglet(1, 2).

(3)

◮ Here, ψa(x) and ψb(x) are properly normalized, mutually
orthogonal, distinguishable, single-electron spatial
wavefunctions.

◮ So, spin-0 state is combination of symmetric spatial
wavefunction and anti-symmetric spinor.



Two-Electron States - VII

◮ Symmetry requirements imply that spin-1 quantum state
takes form

|1, 2;mS〉triplet =
1√
2
[ψa(x1)ψb(x2)− ψb(x1)ψa(x2)]χtriplet(1, 2;mS).

(4)

◮ So, spin-1 state is combination of anti-symmetric spatial
wavefunction and symmetric spinor.

◮ Note that, unlike a spin-0 state, electrons cannot have same
spatial wavefunction in spin-1 state. (Otherwise,
|1, 2;mS 〉triplet = 0, which corresponds to absence of quantum
state.)

◮ This is manifestation of Pauli exclusion principle, which states
that requirement that overall wavefunction be anti-symmetric
with respect to label interchange makes it impossible for two
electrons to occupy single-particle quantum states
characterized by same set of quantum numbers.



Two-Electron States - VIII

◮ Mean-square distance between two electrons is

〈|x1 − x2|2〉 = 〈|x1|2 + |x2|2 − 2 x1 · x2〉.

◮ For singlet state (2), in which electrons are in same spatial
quantum state, we get

〈|x1 − x2|2〉= 〈ψa(x1)ψa(x2)||x1|2 + |x2|2 − 2 x1 · x2|ψa(x1)ψa(x2)〉
= 2 〈|x|2〉a − 2 〈x〉a · 〈x〉a. (5)



Two-Electron States - IX

◮ For singlet state (3), and triplet state (4), in which electron
are in different spatial quantum states, we get

〈|x1 − x2|2〉=
1

2
〈[ψa(x1)ψb(x2)± ψb(x1)ψa(x2)]||x1|2 + |x2|2 − 2 x1 · x2|

[ψa(x1)ψb(x2)± ψb(x1)ψa(x2)]〉,

where upper/lower signs correspond to singlet/triplet states.

◮ Previous expression reduces to

〈|x1 − x2|2〉 = 〈|x|2〉a + 〈|x|2〉b − 2 〈x〉a · 〈x〉b ∓ 2 |〈a|x|b〉|2.
(6)

◮ Final term on right-hand side of previous expression is due to
symmetry requirements (i.e., it would be absent if there were
no symmetry requirements on spatial wavefunction, which
would be case if two electrons were distinguishable).



Two-Electron States - X

◮ Comparison of (5) and (6) reveals that when electrons are in
different spatial quantum states, symmetry requirements
cause electrons to be, on average, closer together (than would
be case in absence of symmetry requirements) when overall
spatial wavefunction is symmetric with respect to label
interchange, and further apart when overall spatial
wavefunction is anti-symmetric with respect to label
interchange.

◮ Thus, electrons in singlet state are, on average, closer
together than electrons in corresponding triplet state.



Two-Electron Atom - I

◮ Two-electron atom consists of nucleus of charge Z e

surrounded by two electrons.

◮ Let nucleus lie at origin of our coordinate system, and let
position vectors of two electrons be x1 and x2, respectively.

◮ Hamiltonian of system takes form

H = − ~
2

2me

(

∇ 2
1 +∇ 2

2

)

− e2

4π ǫ0

(

Z

r1
+

Z

r2
− 1

|x1 − x2|

)

,

(7)
where r1,2 = |x1,2|.

◮ We have neglected any reduced mass effects.



Two-Electron Atom - II

◮ Terms on right-hand side of (7) represent kinetic energy of
first electron, kinetic energy of second electron, electrostatic
attraction between nucleus and first electron, electrostatic
attraction between nucleus and second electron, and
electrostatic repulsion between two electrons, respectively.

◮ It is final term that causes all of difficulties.

◮ If this term is neglected then we can write

H = H1 + H2,

where

H1,2 = − ~
2

2me
∇ 2

1,2 −
Z e2

4π ǫ0 r1,2
. (8)



Two-Electron Atom - III

◮ In other words, Hamiltonian just becomes sum of separate
hydrogenic Hamiltonians for each electron.

◮ In this case, spatial wavefunctions in (2), (3), and (4) just
become hydrogenic wavefunctions calculated with nuclear
charge Z e.

◮ Let us denote these wavefunction as the ψn,l ,m(x), where n, l ,
and m are standard quantum numbers for a hydrogenic
wavefunction.

◮ We know that

H1,2 ψn,l ,m(x1,2) =
Z 2 E0

n 2
ψn,l ,m(x1,2),

where E0 is hydrogen ground-state energy.



Two-Electron Atom - IV

◮ Singlet state (2) becomes

|n, l ,m; n, l ,m〉singlet = ψn,l ,m(x1)ψn,l ,m(x2)χsinglet, (9)

and has energy

En,l ,m;n,l ,m =
2Z 2 E0

n 2
.



Two-Electron Atom - V

◮ Singlet state (3) becomes

|n, l ,m; n′, l ′,m′〉singlet=
1√
2

[

ψn,l ,m(x1)ψn′,l ′,m′(x2) (10)

+ ψn′,l ′,m′(x1)ψn,l ,m(x2)
]

χsinglet,

and has energy

En,l ,m;n′,l ′,m′ =
Z 2 E0

n 2
+

Z 2 E0

n′ 2
.

◮ Here, it is understood that n, l ,m 6= n′, m′, l ′.



Two-Electron Atom - VI

◮ Triplet state (4) becomes

|n, l ,m; n′, l ′,m′〉triplet=
1√
2

[

ψn,l ,m(x1)ψn′,l ′,m′(x2) (11)

− ψn′,l ′,m′(x1)ψn,l ,m(x2)
]

χtriplet,

and has energy

En,l ,m;n′,l ′,m′ =
Z 2 E0

n 2
+

Z 2 E0

n′ 2
.



Two-Electron Atom - VII

◮ In all cases, in absence of electron repulsion, energy of
two-electron state just depends on n quantum numbers of two
electrons.

◮ Hence, we can write

H |n, n′〉 = En,n′ |n, n′〉,

where

En,n′ =
Z 2 E0

n 2
+

Z 2 E0

n′ 2



Helium Atom - I

◮ Consider Helium atom, for which Z = 2.

◮ Our prediction for energy of ground-state is

E1,1 = 8E0 = −108.85 eV.

◮ Our prediction for energy of singly-excited state (where one
electron is in n = 1 state and other is in n > 1 state) is

E1,n = 4

(

1 +
1

n 2

)

E0 = −54.4

(

1 +
1

n 2

)

eV.



Helium Atom - II

◮ Our prediction for energy of singly-ionized state, where one
electron has been completely removed from atom (but has no
kinetic energy), and other remains in ground-state, is

E1,∞ = 4E0 = −54.42 eV.

◮ Note that singly-excited states merge into continuum at
energy of singly-ionized state.

◮ Our prediction for energy of doubly-ionized state, where both
electrons have been completely removed from atom, is

E∞,∞ = 0.



Helium Atom - III

◮ Our prediction for energies of doubly-excited states (in which
neither electron is in n = 1 state) is

En>1,n′>1= 4

(

1

n 2
+

1

n′ 2

)

E0

= 4E0 − 4

(

1− 1

n 2
− 1

n′ 2

)

E0

= −54.42 eV + 54.42

(

1− 1

n 2
− 1

n′ 2

)

eV.

◮ Final term on right-hand side of previous expression is
positive, and is larger than or equal to 27.21 eV.

◮ Hence, we deduce that energies of all doubly-excited states lie
well above energy of singly-ionized state.



Helium Atom - IV
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Helium Atom - V

◮ Doubly-excited states can decay to singly-ionized state (which
has lower energy), a process known as auto-ionization. This
process takes place comparatively rapidly.

◮ Follows that doubly-excited states are not really bound states,
because they spontaneously ionize almost immediately after
they form.

◮ In following, we will concentrate on true bound states of
Helium atom, which consist of ground-state and singly-excited
states.



Influence of Electron-Electron Repulsion Term - I

◮ By neglecting electron-electron repulsion term in Hamiltonian,
we have derived expressions for wavefunctions and energies of
Helium atom energy eigenstates.

◮ Our prediction for energy of ground-state is

E1,1 = −108.85 eV.

◮ However, experimentally measured ground-state energy is

E1,1 = −78.98 eV.

◮ Large discrepancy between previous two figures demonstrates
that neglected electron-electron repulsion term makes large
contribution to Helium atom ground-state energy.



Influence of Electron-Electron Repulsion Term - II

◮ We can write Hamiltonian (7) in form

H = H1 + H2 + Vee ,

where H1,2 are defined in (8), and

Vee =
e2

4π ǫ0

1

|x1 − x2|

is electron-electron repulsion term.

◮ Let us treat Vee as a perturbation. (This is a questionable
approach because Vee is not really small compared to other
terms in Hamiltonian.)



Influence of Electron-Electron Repulsion Term - III

◮ Eigenstates of unperturbed Hamiltonian are specified in (2),
(3), and (4).

◮ Ground-state takes form

|1, 0, 0〉singlet = ψn,l ,m(x1)ψn,l ,m(x2)χsinglet. (12)

◮ Singly-excited states take form

|n, l ,m〉singlet=
1√
2
[ψ1,0,0(x1)ψn,l ,m(x2) (13)

+ ψn,l ,m(x1)ψ1,0,0(x2)]χsinglet,

|n, l ,m〉triplet=
1√
2
[ψ1,0,0(x1)ψn,l ,m(x2) (14)

− ψn,l ,m(x1)ψ1,0,0(x2)]χtriplet.



Influence of Electron-Electron Repulsion Term - IV

◮ Expectation value of full Hamiltonian, with respect to states
(12)–(14), is

E1,0,0,singlet= 2Z 2 E0 + 〈1, 1, 0|Vee |1, 0, 0〉singlet

En,l ,m,singlet=

(

1 +
1

n 2

)

Z 2 E0 + 〈n, l ,m|Vee |n, l ,m〉singlet,

En,l ,m,triplet=

(

1 +
1

n 2

)

Z 2 E0 + 〈n, l ,m|Vee |n, l ,m〉triplet.

◮ Here, it is understood that n > 1.

◮ Note that we are keeping Z as a free parameter. We can give
it value 2 (for Helium) later on.



Influence of Electron-Electron Repulsion Term - V

◮ We obtain

E1,0,0,singlet= 2Z 2 E0 + J1,0

En,l ,m,singlet=

(

1 +
1

n 2

)

Z 2 E0 + Jn,l + Kn,l ,

En,l ,m,triplet=

(

1 +
1

n 2

)

Z 2 E0 + Jn,l − Kn,l .



Influence of Electron-Electron Repulsion Term - VI

◮ Here,

Jn,l =

∫∫

|ψ1,0,0(x1)|2
e2

4π |x1 − x2|
|ψn,l ,m(x2)|2 d3

x1 d
3
x2,

is known as Coulomb integral, and is manifestly positive.

◮ Moreover,

Kn,l =

∫∫

ψ∗

1,0,0(x1)ψ
∗

n,l,m(x2)
e2

4π |x1 − x2|
ψ1,0,0(x2)ψn,l,m(x1) d

3
x1 d

3
x2,

is known as exchange integral. It turns out that Kn,l is also
positive, but is smaller than Jn,l .

◮ Have suppressed m label on Jn,l and Kn,l because these
integrals turn out to be independent of m quantum number.

◮ Exchange integral is consequence of symmetry requirements
on wavefunction. It would be absent if electrons were
distinguishable.



Influence of Electron-Electron Repulsion Term - VII
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Influence of Electron-Electron Repulsion Term - VIII

◮ Figure on previous slide illustrates effect of electron-electron
repulsion term on ground-state and n = 2 singly-excited states
of Helium atom.

◮ Can label unperturbed energy eigenstates as 1s1s, 1s2s, and
1s2p, which means both electrons in 1s (i.e., n = 1, l = 0)
states, one electron in 1s state and other in 2s (i.e., n = 2,
l = 0) state, and one electron in 1s state and other in 2p (i.e.,
n = 2, l = 1) state, respectively.

◮ Note that 1s2s and 1s2p states are degenerate.



Influence of Electron-Electron Repulsion Term - IX

◮ Can label perturbed eigenstates as n2S+1L states, where n is
principal quantum number of excited electron, S is quantum
number associated with total spin (so 2S + 1 = 1 for singlet
state and 2S + 1 = 3 for triplet state), and L = S ,P ,D, · · ·
when l = 0, 1, 2, · · · . Here, l is quantum number determining
overall orbital angular momentum of excited electron (which
means that it also determines overall orbital angular
momentum of whole atom, since other electron possess no
orbital angular momentum).

◮ Clear from diagram that electron-electron repulsion term
increases energy of 11S state with respect to 1s1s state.

◮ Likewise, electron-electron repulsion increases energies of
21,3S states with respect to 1s2s state.

◮ Electron-electron repulsion increases energies of 21,3P states
with respect to 1s2p state by larger amount.

◮ So, electron-electron repulsion splits degeneracy of 21,3S and
21,3P states.



Influence of Electron-Electron Repulsion Term - X

◮ Finally, exchange integral raises energy of singlet state with
respect to corresponding triplet state.

◮ This is not surprising. Have, seen that electrons in symmetric
spatial state are, on average, closer together than electrons in
corresponding anti-symmetric state. Hence, electron-electron
repulsion is larger in former case.

◮ Singlet/triplet states have symmetric/anti-symmetric spatial
wavefunctions, so electron-electron repulsion raises energy of
state by larger amount in former case.



Influence of Electron-Electron Repulsion Term - XI

◮ Let S1 be spin angular momentum of first electron, let S2 be
spin angular momentum of second electron, and let
St = S1 + S2.

◮ Follows that

〈S1 · S2〉 =
1

2
〈S 2

t − S 2
1 − S 2

2 〉 =
~
2

2

[

S (S + 1)− 3

2

]

,

where S is conventional quantum number measuring total
spin angular momentum. (So, S = 0 for singlet state, and
S = 1 for triplet state.)

◮ Let σ1,2 = (~/2)S1,2.

◮ Follows that

〈σ1 · σ2〉 =
{

−3 singlet

1 triplet
.



Influence of Electron-Electron Repulsion Term - XII

◮ Thus, we can write

En,l ,m =

(

1 +
1

n2

)

Z 2 E0 + Jn,l −
1

2
(1 + 〈σ1 · σ2〉)Kn,l ,

as long as we adopt convention that K1,0 = 0.

◮ Previous expression implies that energy of singly-excited state
of two-electron atom is spin-dependent.

◮ This spin depedence is electrostatic in origin, and is of
magnitude e2/(4π ǫ0 a0), which means that it is of order a few
electronvolts.



Influence of Electron-Electron Repulsion Term - XIII

◮ It is instructive to compare previous electrostatic spin
dependence of energy to spin dependence arising from direct
interaction of electron spins.

◮ Electron has magnetic moment of magnitude µe ∼ e ~/me .

◮ Magnetic moment generates magnetic field of approximate
magnitude B ∼ µ0 µe/(4π r3).

◮ Energy of other electron, which is situated distance r ∼ a0
from first, is of order µe B ∼ µ0 (e ~/me)

2/a 3
0 .

◮ Hence, we deduce that direct interaction of electron spins
gives rise to contribution to energy of atom that is of order

α2 e2

4π ǫ0 a0
:

i.e., about 10−4 eV.



Influence of Electron-Electron Repulsion Term - XIV

◮ Magnetic interaction of neighboring electron spins in
ferromagnet is not large enough to keep spins aligned above
temperature T ∼ 10−4 eV/kB ∼ 5K (where kB is Boltzmann
constant).

◮ On other hand, electrostatic interaction can keep spins aligned
for temperatures below about 1 eV/kB ∼ 5× 104 K.

◮ Clearly, it is electrostatic interaction of neighboring spins that
is responsible for room-temperature ferromagnetism.

◮ Electrostatic interaction has its origin in fact that if spins are
aligned/anti-aligned then spatial wavefunctions are
anti-symmetric/symmetric, respectively. Former, state has
lower electrostatic energy because electrons are, on average,
further apart.



Calculation of Coulomb and Exchange Integrals - I

◮ We now need to calculate Coulomb integrals,

Jn,l =

∫∫

|ψ1,0,0(x1)|2
e2

4π |x1 − x2|
|ψn,l ,m(x2)|2 d3

x1 d
3
x2,

and exchange integrals,

Kn,l =

∫∫

ψ∗

1,0,0(x1)ψ
∗

n,l,m(x2)
e2

4π |x1 − x2|
ψ1,0,0(x2)ψn,l,m(x1) d

3
x1 d

3
x2.



Calculation of Coulomb and Exchange Integrals - II

◮ We know that

ψn,l ,m(x) = Rn,l(r)Y
m
l (θ, φ).

◮ Moreover, it can be shown that

1

|x1 − x2|
=
∑

l=0,∞

∑

m=−l ,l

4π

2l + 1

r l<

r l+1
>

Ym ∗

l (θ1, φ1)Y
m
l (θ2, φ2),

where r< is lesser of r1 and r2, and r> is greater.



Calculation of Coulomb and Exchange Integrals - III

◮ Let

ρ =
2Z r

a0
.

◮ Follows that

Rn,l(r) =

(

2Z

a0

)3/2

Rn,l(ρ),

where

Rn,l(ρ) =

[

(n − l − 1)!

2 n 4 (n + l)!

]1/2

e−ρ/(2 n)
(ρ

n

)l

L2l+1
n−l−1(ρ/n).



Calculation of Coulomb and Exchange Integrals - IV

◮ Obtain
Jn,l = Z |E0| Jn,l ,

where

Jn,l = 4
∑

l ′=0,∞

∑

m′=−l ′,l ′

1

2l ′ + 1
Al ′,m′ Bl ,m;l ′,m′ Cn,l ,l ′ ,

Al ′,m′ =

∮

Ym′
∗

l ′ dΩ,

Bl ,m;l ′,m′ =

∮

Ym ∗

l Ym
l Ym′

l ′ dΩ,

Cn,l ,l ′ =

∫

∞

0

∫

∞

0
ρ 2
1 ρ

2
2

ρl
′

<

ρl
′+1
>

[R1,0(ρ1)]
2 [Rn,l(ρ2)]

2 dρ1 dρ2.



Calculation of Coulomb and Exchange Integrals - IV

◮ Orthonormality of spherical harmonics reveals that
Al ′,m′ =

√
4π δl ′,0 δm′,0 and Bl ,m;0,0 = 1/

√
4π.

◮ Hence, we get

Jn,l = 4

∫

∞

0

∫

∞

0

ρ 2
1 ρ

2
2

ρ>
[R1,0(ρ1)]

2 [Rn,l (ρ2)]
2 dρ1 dρ2.

◮ However,

R1,0(ρ) =
1√
2
e−ρ/2.

◮ Thus, we obtain

Jn,l = 2

∫

∞

0
ρ2 [Rn,l (ρ2)]

2

(
∫ ρ2

0
ρ 2
1 e−ρ1 dρ1

)

dρ2

+2

∫

∞

0
ρ 2
2 [Rn,l(ρ2)]

2

(
∫

∞

ρ2

ρ1 e
−ρ1 dρ1

)

dρ2.



Calculation of Coulomb and Exchange Integrals - V

◮ Some straightforward integration yields final result

Jn,l = 2

∫

∞

0
ρ
[

2− e−ρ (2 + ρ)
]

[Rn,l (ρ)]
2 dρ.

◮ For case n = 1 and l = 0, we have

R1,0(ρ) =
1√
2
e−ρ.

◮ Hence, we obtain

J1,0 =

∫

∞

0
[2− e−ρ (2 + ρ)] e−ρ dρ =

5

4
.



Calculation of Coulomb and Exchange Integrals - VI

◮ Hence, our new estimate for ground-state energy of Helium
atom, which takes electron-electron repulsion into account, is

E1,0,0,singlet = 2Z 2 E0 −
5Z

4
E0 =

11

2
E0 = −74.83 eV,

given that Z = 2.

◮ This new estimate is much closer to experimental result (i.e.,
−78.98 eV) than our previous estimate (i.e., −108.85 eV)
that did not take electron-electron repulsion into account.



Calculation of Coulomb and Exchange Integrals - VII

◮ We also obtain
Kn,l = Z |E0| Kn,l ,

where

Kn,l = 4
∑

l′=0,∞

∑

m′=−l′,l′

1

2l ′ + 1
|Dl,m;l′,m′ |2 En,l,l′,

Dl,m;l′,m′ =

∫

Y m ∗

l (θ, φ)Y m′

l′ (θ, φ) dΩ,

En,l,l′ =

∫

∞

0

∫

∞

0

ρ 2
1 ρ

2
2

ρl<
ρl+1
>

R1,0(ρ1)Rn,l,l′(ρ1)R1,0(ρ2)Rn,l(ρ2) dρ1 dρ2.



Calculation of Coulomb and Exchange Integrals - VIII

◮ Orthonormality of spherical harmonics reveals that
Dl ,m;l ′,m′ = δl ,l ′ δm,m′ .

◮ Hence, we get

Kn,l =
4

2 l + 1

∫

∞

0

∫

∞

0

ρ 2
1 ρ

2
2 ρ

l
<

ρl+1
>

R1,0(ρ1)Rn,l (ρ1)R1,0(ρ2)Rn,l(ρ2) dρ1 dρ2,

which we can write as

Kn,l =
4

2 l + 1

∫

∞

0

∫ ρ2

0

ρ 2+l
1

ρl−1
2

R1,0(ρ1)Rn,l(ρ1)R1,0(ρ2)Rn,l (ρ2) dρ1 dρ2

+
4

2 l + 1

∫

∞

0

∫

∞

ρ2

ρ 2+l
2

ρl−1
1

R1,0(ρ1)Rn,l (ρ1)R1,0(ρ2)Rn,l (ρ2) dρ1 dρ2.



Calculation of Coulomb and Exchange Integrals - IX

◮ If we exchange order of integration, then we deduce that

∫

∞

0

∫ ρ2

0

ρ 2+l
1

ρl−1
2

R1,0(ρ1)Rn,l(ρ1)R1,0(ρ2)Rn,l(ρ2) dρ1 dρ2

=

∫

∞

0

∫

∞

ρ1

ρ 2+l
1

ρl−1
2

R1,0(ρ1)Rn,l (ρ1)R1,0(ρ2)Rn,l (ρ2) dρ2 dρ1.

◮ If we now interchange variables of integration, ρ1 ↔ ρ2, then
we get

∫

∞

0

∫ ρ2

0

ρ 2+l
1

ρl−1
2

R1,0(ρ1)Rn,l(ρ1)R1,0(ρ2)Rn,l(ρ2) dρ1 dρ2

=

∫

∞

0

∫

∞

ρ2

ρ 2+l
2

ρl−1
1

R1,0(ρ1)Rn,l (ρ1)R1,0(ρ2)Rn,l (ρ2) dρ1 dρ2.



Calculation of Coulomb and Exchange Integrals - X

◮ Hence, we deduce that

Kn,l =
4

2 l + 1

∫

∞

0
ρ2+l e−ρ/2 Rn,l(ρ)In,l (ρ) dρ,

where

In,l(ρ) =
∫

∞

ρ
x1−l e−x/2 Rn,l(x) dx .

◮ Here, we have made use of fact that R1,0(ρ) = e−ρ/2/
√
2.



Calculation of Coulomb and Exchange Integrals - XI

◮ In general, the Jn,l and the Kn,l , for n > 1, are too
complicated to evaluate analytically.

◮ However, they are straightforward to evaluate numerically
(e.g., using Python).



Calculation of Coulomb and Exchange Integrals - XII
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Calculation of Coulomb and Exchange Integrals - XIII

◮ Agreement between new theoretical calculation and
experimental data is not particularly impressive.

◮ New theoretical calculation that includes electron-electron
repulsion does get some things right.

◮ For instance, P states have higher energies than
corresponding S states, and D states have higher energies
than corresponding P states. (Recall that all these states are
degenerate in absence of electron-electron repulsion).

◮ Also, singlet states have higher energies that corresponding
triplet state.

◮ However, our estimates for Coulomb and exchange integrals
seem to be significantly too high.

◮ How can we further improve calculation?



Variational Method - I

◮ Suppose that we wish to solve time-independent Schrödinger
equation

H |ψ〉 = E |ψ〉,
where H is known (presumably complicated) time-
independent Hamiltonian.

◮ Let |ψ〉 be a properly normalized trial solution to previous
equation.

◮ So-called variational principle states, quite simply, that true
ground-state energy, E0, is always less than or equal to
expectation value of H calculated with trial solution: that is,

E0 ≤ 〈ψ|H|ψ〉.

◮ Thus, by varying |ψ〉 until expectation value of H is
minimized, we can obtain approximations to eigenstate and
energy of ground-state.



Variational Method - II

◮ Let us prove variational principle.
◮ Suppose that the |n〉 and the En are true eigenstates and

eigenvalues of H: that is,

H |n〉 = En |n〉. (15)

◮ Furthermore, let

E0 < E1 < E2 < · · ·, (16)

so that |0〉 is ground-state, |1〉 is first excited state, et cetera.
◮ The |n〉 are assumed to be orthonormal: that is,

〈n|m〉 = δnm. (17)

◮ If our trial state |ψ〉 is properly normalized then we can write

|ψ〉 =
∑

n

cn |n〉,

where
∑

n

|cn|2 = 1. (18)



Variational Method - III

◮ Expectation value of H, calculated with |ψ〉, takes form

〈ψ|H|ψ〉=
(

∑

n

c∗n 〈n|
)

H

(

∑

m

cm |m〉
)

=
∑

n,m

c ∗

n cm 〈n|H|m〉

=
∑

n,m

c ∗

n cm Em 〈n|m〉 =
∑

n

En |cn|2,

where use has been made of (15) and (17).

◮ So, we can write

〈ψ|H|ψ〉 = |c0|2 E0 +
∑

n>0

|cn|2 En.

◮ However, (18) can be rearranged to give

|c0|2 = 1−
∑

n>0

|cn|2.



Variational Method - IV

◮ Combining previous two equations, we obtain

〈ψ|H|ψ〉 = E0 +
∑

n>0

|cn|2 (En − E0).

◮ Second term on right-hand side of previous expression is
positive definite, because En − E0 > 0 for all n > 0 [see (16)].

◮ Hence, we obtain desired result

E0 ≤ 〈ψ|H|ψ〉.



Variational Method - V

◮ Suppose that we have found a good approximation, |ψ0〉, to
ground-state eigenstate.

◮ If |ψ〉 is a normalized trial state that is orthogonal to |ψ0〉
(i.e., 〈ψ|ψ0〉 = 0) then, by repeating previous analysis, we can
easily demonstrate that

E1 ≤ 〈ψ|H|ψ〉.
◮ Thus, by varying |ψ〉 until expectation value of H is

minimized, we can obtain approximations to eigenstate and
energy of first excited state.

◮ We can continue process until we have approximations to all
of stationary eigenstates.

◮ Errors are cumulative in this method, so that approximations
to highly excited states are likely to be inaccurate.

◮ For this reason, variational method is generally only used to
calculate ground-state, and first few excited states, of
complicated quantum systems.



Application to Helium Atom - I

◮ Our previous estimate for ground-state energy of a
two-electron atom was

E1,0,0,singlet = 2Z 2 E0 −
5Z

4
E0,

where Z is nuclear charge.

◮ When evaluated for Z = 2 (Helium), we get

E1,0,0,singlet =
11

2
E0 = −74.83 eV,

which is 5.3% higher than experimentally measured energy.

◮ Can we do better?



Application to Helium Atom - II

◮ Suppose that we treat nuclear charge, Z , as a variable?

◮ If it turns out that value of Z that minimizes ground-state
energy is less than true nuclear charge then we can
understand reduction as consequence of partial shielding of
nuclear potential seen by one electron due to negative charge
of other electron.



Application to Helium Atom - III

◮ We can rewrite Hamiltonian of two-electron atom in form

H = H1(Z
′) + H2(Z

′) + Vee + U(Z ′),

where

H1,2(Z
′) = − ~

2

2me
∇ 2

1,2 −
Z ′ e2

4π ǫ0 r1,2

is Hamiltonian of hydrogenic atom with nuclear charge +Z ′ e,

Vee =
e2

4π ǫ0

1

|x1 − x2|

is electron-electron repulsion term, and

U(Z ′) =
e2

4π ǫ0

(

Z ′ − Z

r1
+

Z ′ − Z

r2

)

.

◮ Note that Z ′ is effective nuclear charge, while Z is true
nuclear charge.



Application to Helium Atom - IV

◮ We shall treat H1(Z
′) + H2(Z

′) as unperturbed Hamiltionan
of system, and Vee + U(Z ′) as perturbation.

◮ It follows that ground-state energy is

E1,0,0,singlet = 2Z ′ 2 E0 + 〈Vee〉1,0,0,singlet + 〈U〉1,0,0,singlet.

◮ However, we have already seen that

〈Vee〉1,0,0,singlet = −5Z ′

4
E0.

◮ Moreover, it is easily demonstrated that

〈U〉1,0,0,singlet =
e2

4π ǫ0
2 (Z ′ − Z )

〈

1

r

〉

1,0,0,singlet

.



Application to Helium Atom - V

◮ Now, we know that

〈

1

r

〉

1,0,0,singlet

=
Z ′

a0
,

and E0 = −e2/(8π ǫ0 a0), so we get

〈U〉1,0,0,singlet = −4 (Z ′ − Z )Z ′ E0.



Application to Helium Atom - VI

◮ Hence,

E1,0,0,singlet = 2Z ′ 2 E0 −
5Z ′

4
E0 − 4 (Z ′ − Z )Z ′ E0,

or

E1,0,0,singlet(Z
′) =

[

−2Z ′ 2 +

(

4Z − 5

4

)

Z ′

]

E0, (19)

◮ Ground-state energy is minimized with respect to effective
nuclear charge, Z ′, when

dE1,0,0,singlet

dZ ′
=

[

−4Z ′ +

(

4Z − 5

4

)

Z ′

]

E0 = 0.



Application to Helium Atom - VII

◮ Thus, energy is minimized when

Z ′ = Z − 5

16
, (20)

which does indicate a degree of shielding of nuclear charge
seen by given electron due to presence of other electron.

◮ Substituting into (19), our new estimate for ground-state
energy of two-electron atom becomes

E1,0,0,singlet = 2

(

Z − 5

16

)2

E0. (21)

◮ Finally, for case of Helium (Z = 2) we get

E1,0,0,singlet =
36

27
E0 = −77.49 eV,

which is 1.9% larger than experimental result.



Application to Helium Atom - VIII

◮ More generally, if we apply (20) and (21) to singlet
ground-states of negative hydrogen ion, H− (i.e., Z = 1),
singly-ionized lithium ion, Li+ (i.e., Z = 3), doubly-ionized
beryllium ion, Be++ (i.e., Z = 4), and triply-ionized boron
ion, B+++ (i.e., Z = 5), as well as neutral helium atom, He
(i.e., Z = 2), then we get predictions tabulated below:

Z Z ′ Evar(eV) Eexpt(eV) Error(%)

1 0.688 -12.86 -14.36 10.4

2 1.688 -77.49 -78.98 1.9

3 2.688 -196.54 -198.09 0.78

4 3.688 -370.01 -371.59 0.43

5 4.688 -597.91 -599.52 0.27



Application to Helium Atom - IX

◮ It can be seen that error decreases as Z increases.

◮ However, error for H− ion is quite severe (10%).

◮ In fact, estimate for ground-state energy of H− (−12.86 eV)
is slightly higher than ground-state energy of neutral hydrogen
atom (−13.61 eV).

◮ This prediction leads to erroneous impression that it is not
energetically favorable for neutral hydrogen atom to absorb
additional electron to form negative hydrogen ion. In other
words, H− ion has negative binding energy.

◮ Can we further improve our prediction of ground-state energy
of a two-electron atom/ion?



Application to Helium Atom - X

◮ Let us adopt following trial ground-state:

|1, 0, 0〉singlet =
1√
2
[ψ1(x1)ψ2(x2) + ψ2(x1)ψ1(x2)]χsinglet,

(22)
where

ψ1(x)=
1√
π

(

Z1

a0

)3/2

exp

(

−Z1 r

a0

)

,

ψ2(x)=
1√
π

(

Z2

a0

)3/2

exp

(

−Z2 r

a0

)

.

◮ ψ1 and ψ2 are hydrogenic ground-state wavefunctions
corresponding to nuclear charges Z1 and Z2, respectively.



Application to Helium Atom - XI

◮ In effect, we are saying that each electron experiences a
different nuclear charge due to shielding action of other
electron.

◮ Calculation of expectation value of two-electron atom/ion
Hamiltonian with trial ground-state (22) is straightforward,
but tedious.1

◮ Result is

〈H〉

E0
=

x8 − 2 Z x7 − x6 y2/2 + x5 y2/2 + x3 y4/8 − (2Z − 5/8) x y6 + y8/2

x6 + y6
, (23)

where x = Z1 + Z2 and y = 2
√
Z1 Z2.

◮ Need to minimize (23) with respect to variations in Z1 and Z2.

◮ This can only be done numerically (e.g., using Python).
Results are tabulated on next slide.

1Quantum Mechanics, R. Fitzpatrick, World Scientific 2015



Application to Helium Atom - XI

Z Zav Z1 Z2 Evar(eV) Eexpt(eV) Error(%)

1 0.661 1.039 0.283 -13.97 -14.36 2.7

2 1.686 2.183 1.189 -78.25 -78.98 0.92

3 2.687 3.295 2.079 -197.25 -198.09 0.42

4 3.687 4.388 2.985 -370.70 -371.59 0.24

5 4.687 5.473 3.901 -598.58 -599.52 0.16

◮ Note that Zav = (Z1 + Z2)/2 is almost identical to Z ′ from
previous table. So, average nuclear charge is same as before.

◮ Splitting of nuclear charge is due to fact that electron-electron
repulsion causes two electrons to actively avoid one another.
In other words, if one electron is close to nucleus then other
electron tends to be far from nucleus, and vice versa.



Application to Helium Atom - XII

◮ Refined estimates for ground-state energies of two-electron
atom/ion are substantially more accurate than previous
estimates.

◮ In particular, estimate for ground-state energy of H− ion
(−13.97 eV) is now less than neutral hydrogen ground-state
energy (−13.61 eV), leading to correct conclusion that H− ion
has positive binding energy.



Application to Helium Atom - XIII

◮ Idea of splitting of effective nuclear charge experienced by
each electron in two-electron atom leads to following guess for
improved calculation of Helium singly-excited states.

◮ Suppose that inner electron (in 1, 0, 0 state) sees full nuclear
charge 2 e, while outer electron (in n > 1, l , m state) only
sees charge 1 e due to shielding effect of inner electron.

◮ Can easily perform all required integrals numerically (e.g., in
Python).



Application to Helium Atom - IX
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Application to Helium Atom - X

◮ Calculation is improvement on previous one, although splitting
of 2S and 3S triplet and singlet states is still too large.



Spectrum of Helium - I

◮ Standard selection rules for radiation-induced transitions
between atomic energy levels do not allow there to be a
change in overall spin quantum number of atom (because, to
lowest order, electromagnetic waves do not couple to electron
spin).

◮ Hence, transitions between singlet and triplet states of Helium
atom are forbidden.

◮ For this reason, it was originally supposed that there were two
types of Helium in nature: parahelium (S = 0) and
orthohelium (S = 1). (Recall that Helium was discovered via
its absorption lines in spectrum of Sun.)

◮ Transitions between parahelium and orthohelium can actually
occur, with very low probability, due to higher-order effects.



Spectrum of Helium - II

◮ Thus, 23S state (which is ground-state of orthohelium) can
decay to 11S state (which is much lower energy ground-state
of parahelium), but process takes about 8000 seconds.


