
06 - Time-Independent Perturbation Theory

◮ Aim of Section:
◮ Introduce time-independent perturbation theory. Applications

include Stark effect, Zeeman effect, fine structure of
hydrogenic atoms, and hyperfine structure of hydrogen atom.



Introduction - I

◮ Consider following common problem. Hamiltonian of a
quantum mechanical system is written

H = H0 + H1.

◮ Here, H0 is a simple Hamiltonian whose eigenvalues and
eigenstates are known exactly.

◮ H1 introduces some interesting additional physics into
problem, but is sufficiently complicated that when added to
H0 we can no longer find exact energy eigenvalues and
eigenstates.

◮ However, H1 can, in some sense (which we shall specify more
precisely later on), be regarded as small compared to H0.

◮ Can we find approximate eigenvalues and eigenstates of
modified Hamiltonian, H0 + H1, by performing some sort of
perturbation expansion about eigenvalues and eigenstates of
original Hamiltonian, H0?



Introduction - II

◮ In this section, we shall only discuss so-called
time-independent perturbation theory, in which modification
to Hamiltonian, H1, has no explicit dependence on time.

◮ It is also assumed that unperturbed Hamiltonian, H0, is time
independent.



Improved Notation - I

◮ Let the ψi be a complete set of eigenstates of Hamiltonian,
H, corresponding to eigenvalues Ei : i.e.,

H ψi = Ei ψi .

◮ Expect the ψi to be orthonormal.

◮ For spatial wavefunction, this implies that

∫

ψ∗
i ψj d

3x = δij . (1)

◮ For spinor, this implies that

ψ†
i ψj = δij . (2)

◮ Generalization to case where ψ is a product of a spatial
wavefunction and a spinor is fairly obvious.



Improved Notation - II

◮ Can represent all of previous possibilities by writing

〈ψi |ψj〉 ≡ 〈i |j〉 = δij .

◮ Term in angle brackets represents integral appearing in (1) in
regular space, and spinor product appearing in (2) in
spin-space.

◮ Advantage of our new notation is its great generality: i.e., it
can deal with both spatial wavefunctions and spinors.



Improved Notation - III

◮ Expanding general wavefunction, ψa, in terms of energy
eigenstates, ψi , we obtain

ψa =
∑

i

ci ψi . (3)

◮ If ψa is a spatial wavefunction then

ci =

∫

ψ∗
i ψa d

3x.

◮ If ψa is a spinor then

ci = ψ†
i ψa.

◮ Can represent both these possibilities by writing

ci = 〈ψi |ψa〉 ≡ 〈i |a〉.
◮ Expansion (3) thus becomes

ψa =
∑

i

〈ψi |ψa〉ψi ≡
∑

i

〈i |a〉ψi . (4)



Improved Notation - IV

◮ Incidentally, it follows that

〈i |a〉∗ = 〈a|i〉.

◮ Could further generalize (4) by writing

|a〉 =
∑

i

〈i |a〉 |i〉.

◮ Here, |a〉 represents ψa, etc.

◮ Likewise, 〈i | represents ψ∗
i (or ψ†

i if ψi is a spinor).



Improved Notation - V

◮ If A is a general operator, and wavefunction ψa is expanded in
manner shown in (3), then expectation value of A is written

〈A〉 =
∑

i ,j

c∗i cj Aij . (5)

◮ Here, the Aij are unsurprisingly known as matrix elements of
A.

◮ If ψa is a spatial wavefunction then

Aij =

∫

ψ∗
i Aψj d

3x. (6)

◮ If ψ is a spinor then

Aij = ψ†
i Aψj . (7)



Improved Notation - VI

◮ Can represent both possibilities by writing

Aij = 〈ψi |A|ψj〉 ≡ 〈i |A|j〉.

◮ Expansion (5) thus becomes

〈A〉 ≡ 〈a|A|a〉 =
∑

i ,j

〈a|i〉〈i |A|j〉〈j |a〉. (8)

◮ Incidentally, follows that

〈i |A|j〉∗ = 〈j |A†|i〉.

◮ Finally, it is clear from (8) that

∑

i

|i〉〈i | ≡ 1,

where the ψi are a complete set of eigenstates, and 1 is
identity operator.



Two-State System - I

◮ Consider simplest possible non-trivial quantum mechanical
system in which there are only two independent eigenstates of
unperturbed Hamiltonian: i.e.,

H0 |1〉= E1 |1〉, (9)

H0 |2〉= E2 |2 〉. (10)

◮ It is assumed that these states, and their associated
eigenvalues, are known.

◮ We also expect states to be orthonormal, and to form a
complete set.



Two-State System - II

◮ Let us now try to solve modified energy eigenvalue problem

(H0 + H1) |E 〉 = E |E 〉. (11)

◮ In fact, we can solve this problem exactly.

◮ Because eigenstates of H0 form a complete set, we can write

|E 〉 = 〈1|E 〉 |1〉 + 〈2|E 〉 |2〉. (12)

◮ It follows from (11) that

〈i |H0 + H1|E 〉 = E 〈i |E 〉, (13)

where i = 1 or 2.



Two-State System - III

◮ (9), (10), (12), (13), and orthonormality condition

〈i |j〉 = δij , (14)

yield two coupled equations that can be written in matrix
form:
(

E1 − E + e11, e12

e∗12, E2 − E + e22

)( 〈1|E 〉
〈2|E 〉

)

=

(

0

0

)

, (15)

where

e11 = 〈1|H1|1〉, (16)

e22 = 〈2|H1|2〉, (17)

e12 = 〈1|H1|2〉 = 〈2|H1|1〉∗. (18)

◮ Here, use has been made of fact that H1 is an Hermitian
operator.



Two-State System - IV

◮ Consider special (but not uncommon) case of perturbing
Hamiltonian whose diagonal matrix elements are zero, so that

e11 = e22 = 0.

◮ Solution of (15) (obtained by setting determinant of matrix to
zero) is

E =
(E1 + E2)±

√

(E1 − E2) 2 + 4 |e12| 2
2

.

◮ Expand in supposedly small parameter

ǫ =
|e12|

E1 − E2
.



Two-State System - V

◮ We obtain

E ≃ 1

2
(E1 + E2)±

1

2
(E1 − E2) (1 + 2 ǫ 2 + · · · ).

◮ Previous expression yields modification of energy eigenvalues
due to perturbing Hamiltonian:

E ′
1 = E1 +

|e12| 2
E1 − E2

+ · · ·,

E ′
2 = E2 −

|e12| 2
E1 − E2

+ · · ·.

◮ Note that H1 causes upper eigenvalue to rise, and lower to fall.



Two-State System - VI

◮ Easily demonstrated that modified eigenstates take form

|1〉′ = |1〉 + e∗12
E1 − E2

|2〉+ · · ·,

|2〉′ = |2〉 − e12

E1 − E2
|1〉+ · · ·.

◮ Thus, modified energy eigenstates consist of one of
unperturbed eigenstates, plus a slight admixture of other.

◮ Expansion procedure is only valid when |ǫ| ≪ 1.

◮ This suggests that condition for validity of perturbation
method is

|e12| ≪ |E1 − E2|.
◮ In other words, when we say that H1 needs to be small

compared to H0, what we really mean is that previous
inequality must be satisfied.



Non-Degenerate Perturbation Theory - I

◮ Let us generalize perturbation analysis to deal with systems
possessing more than two energy eigenstates.

◮ Consider system in which energy eigenstates of unperturbed
Hamiltonian, H0, are denoted

H0 |n〉 = En |n〉,

where n runs from 1 to N.

◮ Eigenstates are assumed to be orthonormal, so that

〈m|n〉 = δnm,

and to form a complete set.

◮ Let us now try to solve energy eigenvalue problem for
perturbed Hamiltonian:

(H0 + H1) |E 〉 = E |E 〉.



Non-Degenerate Perturbation Theory - II

◮ It follows that

〈m|H0 + H1|E 〉 = E 〈m|E 〉,

where m can take any value from 1 to N.

◮ We can express |E 〉 as a linear superposition of unperturbed
energy eigenstates:

|E 〉 =
∑

k

〈k |E 〉 |k〉,

where k runs from 1 to N.

◮ We can combine previous equations to give

(Em − E + emm) 〈m|E 〉 +
∑

k 6=m

emk 〈k |E 〉 = 0, (19)

where
emk = 〈m|H1|k〉. (20)



Non-Degenerate Perturbation Theory - III

◮ Let us now develop our perturbation expansion.
◮ We assume that

emk

Em − Ek

∼ O(ǫ)

for all m 6= k , where ǫ ≪ 1 is our expansion parameter.
◮ We also assume that

emm

Em

∼ O(ǫ)

for all m.
◮ Search for a modified version of nth unperturbed energy

eigenstate for which

|E 〉 = |n〉+O(ǫ),

and

〈n|E 〉= 1,

〈m|E 〉= O(ǫ)

for m 6= n.



Non-Degenerate Perturbation Theory - IV

◮ Suppose that we write out (19) for m 6= n, neglecting terms
that are O(ǫ 2) according to our expansion scheme.

◮ We find that

(Em − En) 〈m|E 〉 + emn ≃ 0,

giving

〈m|E 〉 ≃ − emn

Em − En
.

◮ Substituting previous expression into (19), evaluated for
m = n, and neglecting O(ǫ3) terms, we obtain

(En − E + enn)−
∑

k 6=n

|enk | 2
Ek − En

≃ 0.



Non-Degenerate Perturbation Theory - V

◮ Thus, modified nth energy eigenstate possesses an eigenvalue

E ′
n = En + enn +

∑

k 6=n

|enk | 2
En − Ek

+O(ǫ 3), (21)

and a wavefunction

|n〉′ = |n〉+
∑

k 6=n

ekn

En − Ek

|k〉+O(ǫ 2). (22)

◮ Incidentally, it is easily demonstrated that modified
eigenstates remain orthonormal to O(ǫ 2).



Stark Effect - I

◮ Suppose that hydrogenic atom is subject to uniform external
electric field, of magnitude E , directed along z-axis.

◮ Hamiltonian of system can be split into two parts.

◮ First, unperturbed Hamiltonian,

H0 =
p 2

2me
− Z e 2

4πǫ0 r
.

◮ Second, perturbing Hamiltonian,

HS = e E z . (23)



Stark Effect - II

◮ Electron spin is irrelevant to this problem (because spin
operators all commute with HS ), so we can ignore spin
degrees of freedom of system.

◮ Hence, energy eigenstates of unperturbed Hamiltonian are
characterized by three quantum numbers—radial quantum
number n, and two angular quantum numbers l and m.

◮ Let us denote energy eigenstates as the |n, l ,m〉, and let their
corresponding energy eigenvalues be the En,l ,m.



Stark Effect - III

◮ According to (20), (21), and (23), change in energy of
eigenstate characterized by quantum numbers n, l ,m in
presence of small electric field given by

∆En,l ,m = e E 〈n, l ,m|z |n, l ,m〉

+ e 2 E2
∑

n′,l ′,m′ 6=n,l ,m

|〈n, l ,m|z |n′, l ′,m′〉| 2
En,l ,m − En′,l ′,m′

. (24)

◮ This energy-shift is known as Stark effect.



Selection Rules

◮ Sum on right-hand side of (24) seems very complicated.

◮ However, turns out that most of terms in sum are zero.

◮ Follows because matrix elements 〈n, l ,m|z |n′, l ′,m′〉 are zero
for virtually all choices of two sets of quantum number, n, l ,m
and n′, l ′,m′.

◮ Let us try to find a set of rules that determine when these
matrix elements are non-zero.

◮ These rules are usually referred to as selection rules for
problem in hand.



Selection Rules for m

◮ Recall that
Lz = x py − y px . (25)

◮ It follows that
[Lz , z ] = 0, (26)

because z commutes with all operators on r.h.s. of (25).

◮ Thus,

〈n, l ,m|[Lz , z ]|n′, l ′,m′〉= 〈n, l ,m|Lz z − z Lz |n′, l ′,m′〉
= ~ (m −m′) 〈n, l ,m|z |n′, l ′,m′〉 = 0,

because |n, l ,m〉 is eigenstate of Lz corresponding to
eigenvalue m ~.

◮ Hence, matrix element 〈n, l ,m|z |n′, l ′,m′〉 is zero unless

m′ = m. (27)



Selection Rules for l - I

◮ Easily demonstrated that (Hw. 5, Q. 1)

[AB ,C ] = A [B ,C ] + [A,C ]B , (28)

[A,B C ] = B [A,C ] + [A,B ]C . (29)

◮ Definition of L combined with fundamental commutation
relations for position and momentum yield (Hw. 5, Q. 2)

[Li , xj ] = i ~ ǫijk xk . (30)

◮ Now,
[L2, z ] = [L2x , z ] + [L2y , z ],

where use has been made of (26).

◮ So,

[L2, z ] = Lx [Lx , z ] + [Lx , z ] Lx + Ly [Ly , z ] + [Ly , z ] Ly ,

where use has been made of (28).



Selection Rules for l - II

◮ So,
[L2, z ] = i ~ (−Lx y − y Lx + Ly x + x Ly ),

where use has been made of (30).

◮ So,
[L2, z ] = 2 i ~ (Ly x − Lx y + i ~ z), (31)

where use has again been made of (30).

◮ Finally,

[L2, z ] = 2 i ~ (Ly x − y Lx) = 2 i ~ (x Ly − Lx y), (32)

because −Lx y + i ~ z = −y Lx and Ly x + i ~ z = x Ly .



Selection Rules for l - III

◮ We can write

[L2, [L2, z ]] = 2 i ~ [L2, Ly x − Lx y + i ~ z ],

where use has been made of (31).

◮ Hence,

[L2, [L2, z ]] = 2 i ~
(

[L2, Ly ] x + Ly [L
2, x ]− Lx [L

2, y ]− [L2, Lx ] y

+ i ~ [L2, z ]
)

= 2 i ~
(

Ly [L
2, x ]− Lx [L

2, y ] + i ~ [L2, z ]
)

,

where use has been made of (29) and fact that L2 commutes
with Li .



Selection Rules for l - IV

◮ So we get

[L2, [L2, z ]] = −4~ 2 Ly (y Lz − Ly z) + 4~ 2 Lx (Lx z − x Lz)

− 2~ 2 (L2 z − z L2),

where use has been made of cyclic permutations of (32).

◮ Previous expression can be rearranged to give

[L2, [L2, z ]] = −~
2
{

4 (Lx x + Ly y + Lz z)Lz − 4 (L 2
x + L 2

y + L 2
z ) z

+2 (L2 z − z L2)
}

,

where use has been made of (26).



Selection Rules for l - V

◮ Hence, we obtain

[L2, [L2, z ]] = −~
2
{

4 (Lx x + Ly y + Lz z)Lz − 2 (L2 z + z L2)
}

.

◮ It is easily demonstrated that (Hw. 5, Q. 3)

Lx x + Ly y + Lz z = 0.

◮ Hence, we get

[L2, [L2, z ]] = 2~ 2 (L2 z + z L2).

◮ Finally, can expand previous equation to give

L4 z − 2L2 z L2 + z L4 − 2~ 2 (L2 z + z L2) = 0. (33)



Selection Rules for l - VI

◮ (33) yields

〈n, l ,m|L4 z − 2L2 z L2 + z L4 − 2~ 2 (L2 z + z L2)|n′, l ′,m〉 = 0.

◮ Because |n, l ,m〉 is eigenstate of L2 corresponding to
eigenvalue l (l + 1)~ 2, previous expression yields

{

l 2 (l + 1)2 − 2 l (l + 1) l ′ (l ′ + 1) + l ′ 2 (l ′ + 1)2

−2 l (l + 1)− 2 l ′ (l ′ + 1)
}

〈n, l ,m|z |n′, l ′,m〉= 0,

which reduces to

(l + l ′ + 2) (l + l ′) (l − l ′ + 1) (l − l ′ − 1) 〈n, l ,m|z |n′, l ′,m〉 = 0.
(34)



Selection Rules for l - VII

◮ According to (34), matrix element 〈n, l ,m|z |n′, l ′,m〉 vanishes
unless l = l ′ = 0 or l ′ = l ± 1. (Of course, factor l + l ′ + 2
can never be zero because l and l ′ can never be negative.)

◮ However, an l = 0 wavefunction is spherically symmetric.
Follows, from symmetry, that matrix element
〈n, l ,m|z |n′, l ′,m〉 is zero when l = l ′ = 0.

◮ In conclusion, selection rule for l is that matrix element
〈n, l ,m|z |n′, l ′,m〉 is zero unless

l ′ = l ± 1. (35)



Quadratic Stark Effect

◮ Application of selection rules (27) and (35) to (24) yields

∆En,l ,m = e 2 E2
∑

n′,l ′=l±1

|〈n, l ,m|z |n′, l ′,m〉|2
En,l ,m − En′,l ′,m

. (36)

◮ Note that, according to selection rules, all of terms in (24)
that vary linearly with electric field-strength vanish.

◮ Only those terms that vary quadratically with field-strength
survive.

◮ Hence, this type of energy-shift of an atomic state in presence
of a small electric field is known as quadratic Stark effect.



Electric Polarizability

◮ A neutral atom placed in a small electric field develops an
induced electric dipole moment:

p = α ~E .

◮ Here, α is termed electric polarizability of atom.

◮ Energy change due to induced dipole moment is

∆E = −
∫ ~E

0
p · d ~E ′ = −1

2
α E 2. (37)

◮ Comparison between (36) and (37) yields following expression
for polarizability of n,m, l state:

αn,l ,m = 2 e 2
∑

n′,l ′=l±1

|〈n, l ,m|z |n′, l ′,m〉| 2
En′,l ′,m − En,l ,m

. (38)



Non-Degenerate Perturbation Theory

◮ Unfortunately, (36) predicts infinite energy-shift if there exists
some non-zero matrix element, 〈n, l ,m|z |n′, l ′,m〉, that
couples two degenerate unperturbed energy eigenstates: i.e., if
〈n, l ,m|z |n′, l ′,m〉 6= 0 and En,l ,m = En′,l ′,m.

◮ Perturbation method breaks down completely in this situation.

◮ Conclude that (36) and (38) are only applicable to cases
where coupled eigenstates are non-degenerate.

◮ For this reason, type of perturbation theory employed here is
known as non-degenerate perturbation theory.

◮ Unperturbed eigenstates of hydrogenic atom have energies
that only depend on radial quantum number, n.

◮ Follows that we can only apply previous results to n = 1
eigenstate (because for n > 1 there is coupling to degenerate
eigenstates with same value of n but different values of l).



Polarizability of Hydrogenic Ground-State - I

◮ According to non-degenerate perturbation theory, polarizability
of ground-state (i.e., n = 1) of a hydrogenic atom is given by

α1,0,0 = 2 e 2
∑

n>1

|〈1, 0, 0|z |n, 1, 0〉| 2
En,0,0 − E1,0,0

. (39)

Here, we have made use of fact that En,1,0 = En,0,0.

◮ Sum in previous expression can be evaluated approximately by
noting that

En,0,0 = − Z 2 e 2

8πǫ0 a0 n 2
,

where a0 is Bohr radius.



Polarizability of Hydrogenic Ground-State - II

◮ We can write

En,0,0 − E1,0,0 ≥ E2,0,0 − E1,0,0 =
3

4

Z 2 e 2

8πǫ0 a0
.

◮ This implies that

α1,0,0 <
16

3
4πǫ0 a0

∑

n>1

|〈1, 0, 0|z |n, 1, 0〉| 2 .

◮ However,
∑

n>1

|〈1, 0, 0|z |n, 1, 0〉| 2=
∑

n>1

〈1, 0, 0|z |n, 1, 0〉 〈n, 1, 0|z |1, 0, 0〉

=
∑

n′,l′,m′

〈1, 0, 0|z |n′, l ′,m′〉 〈n′, l ′,m′|z |1, 0, 0〉

= 〈1, 0, 0|z 2|1, 0, 0〉 = 1

3
〈1, 0, 0|r 2|1, 0, 0〉,

where use has been made of selection rules, fact that
|n′, l ′,m′〉 form complete set, and fact that ground-state of
hydrogenic atom is spherically symmetric.



Polarizability of Hydrogenic Ground-State - III

◮ In fact,

〈1, 0, 0|r 2|1, 0, 0〉 = 3 a 2
0

Z 2
.

◮ Hence, we conclude that

α1,0,0 <
16

3

4πǫ0 a
3
0

Z 4
≃ 5.3

4πǫ0 a
3
0

Z 4
.

◮ Exact result (which can be obtained by solving Schrödinger’s
equation in parabolic coordinates) is

α1,0,0 =
9

2

4π ǫ0 a
3
0

Z 4
= 4.5

4πǫ0 a
3
0

Z 4
. (40)



Polarizability of Hydrogenic Ground-State - IV

◮ In principle, should be able to get result (40) by summing
series (39) exactly.

◮ I find that

α1,0,0 = A1,0,0
4πǫ0 a

3
0

Z 4
,

where

A1,0,0 =
1

12

∑

n=2,∞

n 5 I 2n
(n 2 − 1)2

,

and

In =

∫ ∞

0
ρ4 e−(1+n) ρ/2 L3n−2(ρ) dρ.

◮ But numerical evaluation of A1,0,0 gives 3.663 not 4.5! Extra
credit opportunity!



Degenerate Perturbation Theory - I

◮ Let us investigate Stark effect in excited (i.e., n > 1) state of
hydrogenic atom using non-degenerate perturbation theory.

◮ We can write
H0 |n, l ,m〉 = En |n, l ,m〉, (41)

because energy eigenstates of unperturbed Hamiltonian only
depend on quantum number n.

◮ Making use of selection rules (27) and (35), non-degenerate
perturbation theory yields following expressions for perturbed
energy levels and eigenstates [see (21) and (22)]:

E ′
n,l = En + en,l ;n,l +

∑

n′,l ′=l±1

|en′,l ′;n,l | 2
En − En′

, (42)

|n, l ,m〉= |n, l ,m〉+
∑

n′,l ′=l±1

en′,l ′;n,l

En − En′
|n′, l ′,m〉, (43)

where
en′,l ′;n,l = 〈n′, l ′,m|HS |n, l ,m〉.



Degenerate Perturbation Theory - II

◮ Unfortunately, if n > 1 then summations in previous
expressions are not well defined, because there exist non-zero
matrix elements, en,l ′;n,l , that couple degenerate eigenstates:
i.e., there exist non-zero matrix elements that couple states
with same value of n, but different values of l .

◮ These particular matrix elements give rise to singular factors
1/(En − En) in summations.

◮ This does not occur if n = 1 because, in this case, selection
rule l ′ = l ± 1, and fact that l = 0 (because 0 ≤ l < n), only
allow l ′ to take single value 1.

◮ Of course, there is no n = 1 state with l ′ = 1. Hence, there is
only one coupled state corresponding to eigenvalue E1.

◮ However, if n > 1 then there are multiple coupled states
corresponding to eigenvalue En.



Degenerate Perturbation Theory - III

◮ Our problem would disappear if matrix elements of perturbed
Hamiltonian corresponding to same value of n, but different
values of l , were all zero: i.e.,

〈n, l ′,m|HS |n, l ,m〉 = λn,l δl ,l ′ . (44)

◮ In this case, all of singular terms in (42) and (43) would
reduce to zero.

◮ Unfortunately, previous equation is not satisfied in general.

◮ Fortunately, we can always redefine unperturbed eigenstates
corresponding to eigenvalue En in such a manner that (44) is
satisfied



Degenerate Perturbation Theory - IV

◮ Suppose that there are Nn coupled eigenstates belonging to
eigenvalue En.

◮ Let us define Nn new states which are linear combinations of
our Nn original degenerate eigenstates:

|n, l (1),m〉 =
∑

k=1,Nn

〈n, k ,m|n, l (1),m〉 |n, k ,m〉. (45)

◮ Note that new states are also degenerate energy eigenstates of
unperturbed Hamiltonian, H0, corresponding to eigenvalue En.

◮ The |n, l (1),m〉 are chosen in such a manner that they are also
eigenstates of perturbing Hamiltonian, HS : i.e., they are
simultaneous eigenstates of H0 and HS . Thus,

HS |n, l (1),m〉 = λn,l |n, l (1),m〉. (46)



Degenerate Perturbation Theory - V

◮ The |n, l (1),m〉 are also chosen so as to be orthonormal: i.e.,

〈n, l ′(1),m|n, l (1),m〉 = δl ,l ′ . (47)

◮ It follows that

〈n, l ′(1),m|HS |n, l (1),m〉 = λn,l δl ,l ′ . (48)

◮ Thus, if we use new eigenstates, instead of old ones, then we
can employ (42) and (43) directly, because all of singular
terms vanish.

◮ Only remaining difficulty is to determine new eigenstates in
terms of original ones.



Degenerate Perturbation Theory - VI

◮ Now,
∑

l=1,Nn

|n, l ,m〉〈n, l ,m| ≡ 1,

where 1 denotes identity operator in sub-space of all coupled
unperturbed eigenstates corresponding to eigenvalue En.

◮ Using this completeness relation, eigenvalue equation (46) can
be transformed into a straightforward matrix equation:

∑

l ′′=1,Nn

〈n, l ′,m|HS |n, l ′′,m〉 〈n, l ′′,m|n, l (1),m〉

= λn,l 〈n, l ′,m|n, l (1),m〉.



Degenerate Perturbation Theory - VII

◮ Matrix equation can be written more transparently as

Ux = λ x, (49)

where elements of Nn × Nn Hermitian matrix U are

Ujk = 〈n, j ,m|HS |n, k ,m〉. (50)

◮ (49) can be solved to give Nn eigenvalues λn,l (for l = 1 to
Nn), with Nn corresponding eigenvectors xn,l .

◮ Normalized eigenvectors specify weights of new eigenstates in
terms of original eigenstates: i.e.,

(xn,l )k = 〈n, k ,m|n, l (1),m〉, (51)

for k = 1 to Nn.



Degenerate Perturbation Theory - VIII

◮ In our new scheme, (42) and (43) yield

E ′
n,l = En + λn,l +

∑

n′ 6=n,l ′=l±1

|en′,l ′;n,l | 2
En − En′

,

|n, l (1)′ ,m〉= |n, l (1),m〉+
∑

n′ 6=n,l ′=l±1

en′,l ′;n,l

En − En′
|n, l (1),m〉.

◮ There are no singular terms in these expressions, because
summations are over n′ 6= n: i.e., they specifically exclude
problematic, degenerate, unperturbed energy eigenstates
corresponding to eigenvalue En.

◮ Note that first-order energy shifts are equivalent to
eigenvalues of matrix equation (49).

◮ Type of perturbation theory just described is known as
degenerate perturbation theory, for obvious reasons.



Linear Stark Effect - I

◮ Let us examine effect of an external electric field on energy
levels of n = 2 states of a hydrogenic atom.

◮ There are four such states: an l = 0 state, usually referred to
as 2S , and three l = 1 states (with m = −1, 0, 1), usually
referred to as 2P.

◮ All of these states possess same unperturbed energy,

E2,0,0 = − Z 2 e2

32πǫ0 a0
.

◮ As before, perturbing Hamiltonian is

HS = e E z .



Linear Stark Effect - II

◮ According to previously determined selection rules (i.e.,
m′ = m, and l ′ = l ± 1), perturbing Hamiltonian couples
|2, 0, 0〉 and |2, 1, 0〉.

◮ Hence, non-degenerate perturbation theory breaks down when
applied to these two states.

◮ On other hand, non-degenerate perturbation theory works fine
for |2, 1, 1〉 and |2, 1,−1〉 states, because these are not
coupled to any other n = 2 states by perturbing Hamiltonian.



Linear Stark Effect - III

◮ In order to apply perturbation theory to |2, 0, 0〉 and |2, 1, 0〉
states, we have to solve matrix eigenvalue equation

Ux = λ x,

where U is matrix of matrix elements of H1 between states.

◮ Thus,

U = e E
(

0, 〈2, 0, 0|z |2, 1, 0〉
〈2, 1, 0|z |2, 0, 0〉, 0

)

,

where rows and columns correspond to |2, 0, 0〉 and |2, 1, 0〉,
respectively.



Linear Stark Effect - IV

◮ Here, have again made use of selection rules, which tell us
that matrix element of z between two hydrogenic atom states
is zero unless states possess l quantum numbers that differ by
unity.

◮ It is easily demonstrated, from exact forms of 2S and 2P
wavefunctions, that

〈2, 0, 0|z |2, 1, 0〉 = 〈2, 1, 0|z |2, 0, 0〉 = −3 a0
Z
.



Linear Stark Effect - V

◮ Can be seen, by inspection, that eigenvalues of U are
λ1 = 3 e a0 E/Z and λ2 = −3 e a0 E/Z .

◮ Corresponding normalized eigenvectors are

x1 =

(

−1/
√
2

1/
√
2

)

,

x2 =

(

1/
√
2

1/
√
2

)

.



Linear Stark Effect - VI

◮ Thus, simultaneous eigenstates of H0 and HS take form

|1〉= |2, 0, 0〉 − |2, 1, 0〉√
2

,

|2〉= |2, 0, 0〉 + |2, 1, 0〉√
2

.

◮ In absence of an external electric field, both of these states
possess same energy, E2,0,0.

◮ First-order energy shifts induced by an external electric field
are given by

∆E1 = +
3 e a0 E

Z
,

∆E2 = −3 e a0 E
Z

.



Linear Stark Effect - VII

◮ Thus, in presence of an electric field, energies of states 1 and
2 are shifted upwards and downwards, respectively, by an
amount 3 e a0 E/Z .

◮ These states are orthogonal linear combinations of original
|2, 0, 0〉 and |2, 1, 0〉 states.

◮ Note that energy shifts are linear in electric field-strength, so
this effect—which is known as linear Stark effect—is much
larger than quadratic Stark effect.

◮ Note, also, that energies of |2, 1, 1〉 and |2, 1,−1〉 states are
not affected by electric field to first order.

◮ Of course, to second order energies of these states are shifted
by an amount that depends on square of electric field-strength.



Relativistic Correction - I

◮ According to special relativity, kinetic energy (i.e., difference
between total energy and rest mass energy) of a particle of
rest mass m and momentum p is

K =
√

p2 c2 +m2 c4 −mc2.

◮ In non-relativistic limit p ≪ mc , can expand square-root in
previous expression to give

K =
p2

2m

[

1− 1

4

( p

m c

)2
+O

( p

m c

)4
]

.

◮ Hence,

K ≃ p2

2m
− p4

8m3 c2
.

◮ Recognize first term on right-hand side of previous equation
as standard non-relativistic expression for kinetic energy.

◮ Second term is lowest-order relativistic correction to kinetic
energy.



Relativistic Correction - II

◮ Consider effect of relativistic correction on energy levels of a
hydrogenic atom.

◮ Perturbing Hamiltonian takes form

HR = − p4

8m 3
e c2

.

◮ According to first-order perturbation theory, lowest-order
relativistic correction to energy of a hydrogenic atom state
characterized by standard quantum numbers n, l , and m is

∆En,l ,m= 〈n, l ,m|HR |n, l ,m〉 = − 1

8m 3
e c2

〈n, l ,m|p4|n, l ,m〉

= − 1

8m 3
e c2

〈n, l ,m|p2 p2|n, l ,m〉.



Relativistic Correction - III

◮ However, Schrödinger’s equation for a unperturbed hydrogenic
atom can be written

p2 |n, l ,m〉 = 2me (En − V ) |n, l ,m〉,

where V = −Z e2/(4πǫ0 r).

◮ Because p2 is Hermitian operator, follows that

∆En,l,m = − 1

2me c 2
〈n, l ,m|(En − V )2|n, l ,m〉

= − 1

2me c2

(

E 2
n − 2En 〈n, l ,m|V |n, l ,m〉 + 〈n, l ,m|V 2|n, l ,m〉

)

= − 1

2me c2

[

E 2
n + 2En

(

Z e2

4πǫ0

)〈

1

r

〉

+

(

Z e2

4πǫ0

)2〈
1

r2

〉

]

.



Relativistic Correction - IV

◮ However,

En = − Z 2 e2

8πǫ0 a0 n2
,

〈

1

r

〉

=
Z

a0 n2
,

〈

1

r2

〉

=
Z 2

a 2
0 n3 (l + 1/2)

.

◮ Hence, we obtain

∆En,l ,m = En
Z 2 α2

n2

(

n

l + 1/2
− 3

4

)

, (52)

where α = e2/(4πǫ0 ~ c) ≃ 1/137 is dimensionless fine
structure constant.



Darwin Term - I

◮ According to Dirac’s relativistic electron theory, there is
additional relativistic correction to Hamiltonian of electron in
hydrogenic atom that takes form

HD =
Z e2 ~2

8 ǫ0 m2
e c

2
δ3(x).

◮ This correction known as Darwin term.

◮ According to first-order perturbation theory, correction to
energy of a hydrogenic atom state characterized by standard
quantum numbers n, l , and m due to Darwin term is

∆En,l ,m = 〈n, l ,m|HD |n, l ,m〉 = Z e2 ~2

8 ǫ0 m2
e c

2
|ψn,l ,m(0)|2.



Darwin Term - II

◮ However,

|ψn,l ,m(0)| =
1√
π

(

Z

n a0

)3/2

δl ,0 δm,0.

◮ Hence, we obtain

∆En,l ,m = −En
Z 2 α2

n
δl ,0. (53)

◮ Note that Darwin term only modifies energies of l = 0 states.



Spin-Orbit Coupling - I

◮ Electron in a hydrogenic atom experiences an electric field

E =
Z e x

4πǫ0 r3

due to charge on nucleus.

◮ However, according to electromagnetic theory, a
non-relativistic particle moving in an electric field E with
velocity v also experiences an effective magnetic field

B = −v× E

c2
.

◮ Recall, that an electron possesses a magnetic moment

µ = − e

me

S

due to its spin angular momentum, S.



Spin-Orbit Coupling - II

◮ Expect additional contribution to Hamiltonian of a hydrogenic
atom of form

HLS = −µ · B

= − Z e2

4πǫ0 me c2 r3
v × x · S

=
Z e2

4πǫ0 m 2
e c2 r3

L · S,

where L = me x× v is electron’s orbital angular momentum.

◮ This effect known as spin-orbit coupling.

◮ Previous expression is too large, by a factor 2, due to obscure
relativistic effect known as Thomas precession.

◮ Hence, true spin-orbit correction to Hamiltonian is

HLS =
Z e 2

8πǫ0 m2
e c

2 r3
L · S. (54)



Spin-Orbit Coupling - III

◮ Now
J = L+ S

is total angular momentum of electron.

◮ Hence,
J 2 = L2 + S2 + 2L · S,

giving

L · S =
1

2
(J 2 − L2 − S2).



Spin-Orbit Coupling - IV

◮ Recall that while J 2 commutes with both L2 and S2, it does
not commute with either Lz or Sz .

◮ Follows that perturbing Hamiltonian (54) also commutes with
both L2 and S2, but does not commute with either Lz or Sz .

◮ Hence, simultaneous eigenstates of unperturbed and
perturbing Hamiltonians are simultaneous eigenstates of L2,
S2, and J 2.

◮ Important to know this because we can only safely apply
perturbation theory to simultaneous eigenstates of
unperturbed and perturbing Hamiltonians.



Spin-Orbit Coupling - V

◮ Let |l , s; j ,mj 〉 be a simultaneous eigenstate of L2, S2, J 2,
and Jz corresponding to eigenvalues

L2 |l , s; j ,mj 〉= l (l + 1)~ 2 |l , s; j ,mj 〉,
S2 |l , s; j ,mj 〉= s (s + 1)~ 2 |l , s; j ,mj 〉,
J 2 |l , s; j ,mj 〉= j (j + 1)~ 2 |l , s; j ,mj 〉,
Jz |l , s; j ,mj 〉= mj ~ |l , s; j ,mj 〉.



Spin-Orbit Coupling - V

◮ According to first-order perturbation theory, energy-shift
induced in simultaneous eigenstate by spin-orbit coupling is

∆El,1/2;j,mj
= 〈l , 1/2; j ,mj |HLS |l , 1/2; j ,mj〉

=
Z e2

16π ǫ0m2
e c

2

〈

1, 1/2; j ,mj

∣

∣

∣

∣

J 2 − L2 − S2

r3

∣

∣

∣

∣

l , 1/2; j ,mj

〉

=
Z e2 ~ 2

16π ǫ0m 2
e c2

[j (j + 1)− l (l + 1)− 3/4]

〈

1

r3

〉

.

◮ Here, we have made use of fact that s = 1/2 for an electron.

◮ Note that energy-shift is zero for l = 0 state (because
j = 1/2). More directly, L = 0 in an l = 0 state, and
perturbing Hamiltonian is proportional to L · S.



Spin-Orbit Coupling - VI

◮ For an l > 0 state,

〈

1

r3

〉

=
Z 3

a30 n
3 l (l + 1/2) (l + 1)

.

◮ Hence,

∆El,1/2;j,mj
= En

Z 2 α 2

n 2

{

n [3/4 + l (l + 1)− j (j + 1)]

2 l (l + 1/2) (l + 1)

}

(1 − δl,0).

(55)

◮ Note that j = l ± 1/2 for an l > 0 state.



Fine Structure - I

◮ Have found three perturbing Hamiltonians that all give rise to
energy-shifts of nth energy level of a hydrogenic atom that are
similar in magnitude.

◮ Perturbing Hamiltonians are that due to relativistic correction,
HR , that due to Darwin term, HD , and that due to spin-orbit
coupling, HLS .

◮ Corresponding energy-shifts are given in (52), (53), and (55),
respectively.

◮ Let us sum energy-shifts. There are three cases to consider.

1. l = 0 and j = 1/2.
2. l > 0 and j = l − 1/2.
3. l > 0 and j = l + 1/2.



Fine Structure - II

◮ For l = 0, j = 1/2 case, find

∆En,j = En
Z 2 α2

n2

[(

2 n − 3

4

)

− n + 0

]

= En
Z 2 α2

n2

(

n − 3

4

)

= En
Z 2 α2

n2

(

n

j + 1/2
− 3

4

)

. (56)



Fine Structure - III

◮ For l > 0, j = l − 1/2 case, find

∆En,j = En

Z 2 α2

n2

[(

n

l + 1/2
− 3

4

)

+ 0 +

(

n [3/4 + l (l + 1)− j (j + 1)]

2 l (l + 1/2) (l + 1)

)]

= En

Z 2 α2

n2

[

n [3/4 + 3 l (l + 1)− j (j + 1)]

2 l (l + 1/2) (l + 1)
− 3

4

]

= En

Z 2 α2

n2

(

n [2 (j + 1) (j + 3/2)]

2 (j + 1/2) (j + 1) (j + 3/2)
− 3

4

)

= En

Z 2 α2

n2

(

n

j + 1/2
− 3

4

)

. (57)



Fine Structure - IV

◮ For l > 0, j = l + 1/2 case, find

∆En,j = En

Z 2 α2

n2

[(

n

l + 1/2
− 3

4

)

+ 0 +

(

n [3/4 + l (l + 1)− j (j + 1)]

2 l (l + 1/2) (l + 1)

)]

= En

Z 2 α2

n2

[

n [3/4 + 3 l (l + 1)− j (j + 1)]

2 l (l + 1/2) (l + 1)
− 3

4

]

= En

Z 2 α2

n2

(

n [2 (j − 1/2) j ]

2 (j − 1/2) j (j + 1/2)
− 3

4

)

= En

Z 2 α2

n2

(

n

j + 1/2
− 3

4

)

. (58)



Fine Structure - V

◮ In all three cases, (56), (57), and (58), we find that

∆En,j = En
Z 2 α2

n2

(

n

j + 1/2
− 3

4

)

. (59)

◮ This modification of energy levels of a hydrogenic atom due
to a combination of relativity and spin-orbit coupling is known
as fine structure.



Fine Structure - VI

◮ Note that if we solve energy eigenstate problem for a
hydrogenic atom using relativistic quantum mechanics (i.e.,
Dirac equation), we get exact result

En,j

me c2
=

{

1 +
Z 2 α2

(n − j − 1/2 + [(j + 1/2)2 − Z 2 α2]1/2)2

}−1/2

.

◮ Expansion in small parameter Z α yields

En,j

me c2
= 1− Z 2 α2

2 n2
− Z 4 α4

2 n4

(

n

j + 1/2
− 3

4

)

+O(Z α)6.

◮ First term on r.h.s. of previous expression corresponds to
electron rest mass energy.

◮ Second term is standard non-relativistic expression for energy
levels of hydrogenic atom.

◮ Third term is fine-structure correction to these energy levels.



Fine Structure - VII

◮ Conventional to refer to energy eigenstates of a hydrogenic
atom that are also simultaneous eigenstates of J 2 as nLj
states, where n is radial quantum number,
L = (S ,P ,D,F , · · · ) as l = (0, 1, 2, 3, · · · ), and j is total
angular momentum quantum number.

◮ Let us examine effect of fine structure energy-shift (59) on
these eigenstates for n = 1, 2 and 3.



Fine Structure - VIII

◮ For n = 1, in absence of fine structure, there are two
degenerate 1S1/2 states.

◮ According to (59), fine-structure induced energy-shifts of
these two states are same.

◮ Hence, fine structure does not break degeneracy of two 1S1/2
states of hydrogenic atom.



Fine Structure - IX

◮ For n = 2, in absence of fine structure, there are two 2S1/2
states, two 2P1/2 states, and four 2P3/2 states, all of which
are degenerate.

◮ According to (59), fine-structure induced energy-shifts of
2S1/2 and 2P1/2 states are same as one another, but are
different from induced energy-shift of 2P3/2 states.

◮ Hence, fine structure does not break degeneracy of 2S1/2 and
2P1/2 states of hydrogenic atom, but does break degeneracy
of these states relative to 2P3/2 states.



Fine Structure - X

◮

◮ For n = 3, in absence of fine structure, there are two 3S1/2
states, two 3P1/2 states, four 3P3/2 states, four 3D3/2 states,
and six 3D5/2 states, all of which are degenerate.

◮ According to (59), fine structure breaks these states into three
groups: 3S1/2 and 3P1/2 states, 3P3/2 and 3D3/2 states, and
3D5/2 states.

◮ Effect of fine-structure energy-shift on n = 1, 2, and 3 energy
states of a hydrogenic atom is illustrated on next slide.



Fine Structure - XI

2P1/2

+ fine structure

1S1/2

2S1/2

2P3/2

3S1/2

3P3/2

3D5/2

unperturbed

3S1/2

3P3/2

3D5/2

3D3/2

3P1/2

2P3/2

2S1/2 2P1/2

1S1/2

3D3/2

3P1/2



Zeeman Effect - I

◮ Consider a hydrogenic atom placed in a uniform z-directed
external magnetic field of strength B = B ez .

◮ Modification to Hamiltonian of system is

HZ = −µ ·B,

where
µ = − e

2me
(L + 2S)

is total electron magnetic moment, including both orbital and
spin contributions.

◮ Thus,

HZ =
e B

2me
(Lz + 2Sz). (60)



Zeeman Effect - II

◮ Suppose that applied magnetic field is much weaker than
atom’s internal magnetic field.

◮ Internal magnetic field in hydrogen atom specified by

Bint=
v × E

c2
,

E=
e x

4πǫ0 r3
.

◮ But, v ∼ α c and r ∼ a0, so we get

Bint ∼
1

2
α4 me c

2

µB
= 12.5T.

◮ Here,

µB =
e ~

2me
= 5.788 × 10−5

eV/T

is known as Bohr magnetron.
◮ Hence, weak field ordering valid as long as applied magnetic

field strength is much less than 12.5 T.



Zeeman Effect - III

◮ In weak field limit, can treat HZ as small perturbation acting
on simultaneous eigenstates of unperturbed Hamiltonian and
fine-structure Hamiltonian. (Because |Bint| ≫ |B| implies that
HLS ≫ HZ .)

◮ These states are simultaneous eigenstates of L2, S2, J 2, and
Jz . (Because energy depends on quantum number j , but is
independent of l or m.)

◮ Hence, from standard perturbation theory, first-order
energy-shift induced by a weak external magnetic field is

∆El ,1/2;j ,mj
= 〈l , 1/2; j ,mj |HZ |l , 1/2; j ,mj 〉

=
e B

2me
(mj ~+ 〈l , 1/2; j ,mj |Sz |l , 1/2; j ,mj 〉),

(61)

because Jz = Lz + Sz .



Zeeman Effect - IV

◮ However,

|j ,mj 〉=
(

j +mj

2 l + 1

)1/2

|mj − 1/2, 1/2〉′

+

(

j −mj

2 l + 1

)1/2

|mj + 1/2,−1/2〉′ (62)

when j = l + 1/2, and

|j ,mj 〉=
(

j + 1−mj

2 l + 1

)1/2

|mj − 1/2, 1/2〉′

−
(

j + 1 +mj

2 l + 1

)1/2

|mj + 1/2,−1/2〉′ (63)

when j = l − 1/2.
◮ Here, the |m,ms〉′ are simultaneous eigenstates of L2, S2, Lz ,

and Sz , whereas the |j ,mj 〉 are simultaneous eigenstates of L2,
S2, J 2, and Jz .



Zeeman Effect - V

◮ In particular,

Sz |m,±1/2〉′ = ±~

2
|m,±1/2〉′. (64)

◮ Follows from (62) and (64) that

〈l , 1/2; j ,mj |Sz |l , 1/2; j ,mj 〉= 〈j ,mj |Sz |j ,mj 〉

=
~

2

(

j +mj

2 l + 1

)

− ~

2

(

j −mj

2 l + 1

)

=
mj ~

2 l + 1
, (65)

when j = l + 1/2.



Zeeman Effect - VI

◮ Likewise, follows from (63) and (64) that

〈l , 1/2; j ,mj |Sz |l , 1/2; j ,mj 〉= 〈j ,mj |Sz |j ,mj 〉

=
~

2

(

j + 1−mj

2 l + 1

)

− ~

2

(

j + 1 +mj

2 l + 1

)

= − mj ~

2 l + 1
, (66)

when j = l − 1/2.



Zeeman Effect - VII

◮ Follows from (61), (65), and (66) that

∆El ,1/2;j ,mj
= µB B mj

(

1± 1

2 l + 1

)

, (67)

where ± signs correspond to j = l ± 1/2.

◮ Induced energy-shift when a hydrogenic atom is placed in an
external magnetic field known as Zeeman effect.



Zeeman Effect - VIII

◮ Quantum number mj takes values differing by unity in range
−j to j .

◮ Follows from (67) that Zeeman effect splits degenerate states
characterized by j = l + 1/2 into 2 j + 1 equally spaced states
of interstate spacing

∆Ej=l+1/2 = µB B

(

2 l + 2

2 l + 1

)

. (68)

◮ Zeeman effect splits degenerate states characterized by
j = l − 1/2 into 2 j + 1 equally spaced states of interstate
spacing

∆Ej=l−1/2 = µB B

(

2 l

2 l + 1

)

. (69)



Zeeman Effect - IX

◮ In presence of weak external magnetic field, two degenerate
1S1/2 states of hydrogenic atom are split by 2µB B .

◮ Four degenerate 2S1/2 and 2P1/2 states are split by
(2/3)µB B , whereas four degenerate 2P3/2 states are split by
(4/3)µB B .



Zeeman Effect - X

+ Zeemanunperturbed + fine structure

1S1/2

2P3/2

2S1/2 2P1/2

2ǫ

(4/3)ǫ

(4/3)ǫ

(4/3)ǫ

(2/3)ǫ

(2/3)ǫ

(2/3)ǫ

◮ Here, ǫ = µB B .



Zeeman Effect - XI

◮ We need to check that Zeeman Hamiltonian does not couple
degenerate simultaneous eigenstates of unperturbed and
fine-structure Hamiltonians, because, if it does, our
perturbation expansion will break down at second order.

◮ Simultaneous eigenstates of unperturbed and fine-structure
Hamiltonians are the |l , 1/2; j ,mj 〉.

◮ |l , 1/2; j ,mj 〉 and |l ′, 1/2; j ′,m′
j〉 are degenerate if j = j ′.

◮ So we need to prove that all matrix elements of form

〈l , 1/2; j ,mj |HZ |l ′, 1/2; j ,m′
j 〉 (70)

are zero, unless l = l ′ and mj = m′
j .



Zeeman Effect - XII

◮ In fact, HZ commutes with L2 and Jz . Hence, HZ , L
2, and Jz

have simultaneous (orthonormal) eigenstates, which implies
that matrix elements of form (70) are indeed zero if l 6= l ′ or
mj 6= m′

j . (This is true even if j 6= j ′.)

◮ Note that HZ does not commute with J 2. Hence, matrix
elements of form

〈l , 1/2; j ,mj |HZ |l , 1/2; j ′,mj 〉

can be non-zero when j 6= j ′. However, this is not a problem
because coupled states are non-degenerate.



Zeeman Effect - XIII

◮ Because the |l , 1/2; j ,mj 〉 are not simultaneous eigenstates of
unperturbed and perturbing Hamiltonians, (68) and (69) can
only be regarded as expectation values of magnetic-
field-induced energy-shifts.

◮ However, as long as external magnetic field is much weaker
than internal magnetic field, these expectation values are
almost identical to actual measured values of energy-shifts.



Hyperfine Structure - I

◮ Proton in a hydrogen atom is spin one-half charged particle,
and therefore possesses a magnetic moment.

◮ In fact,

µp =
gp e

2mp

Sp,

where µp is proton magnetic moment, Sp is proton spin, and
proton gyromagnetic ratio gp is found experimentally to take
value 5.59.

◮ Note that magnetic moment of proton is much smaller (by a
factor of order me/mp) than that of electron.



Hyperfine Structure - II

◮ According to classical electromagnetism, proton’s magnetic
moment generates a magnetic field of form

B =
µ0

4π r3
[

3 (µp · er ) er − µp

]

+
2µ0
3

µp δ
3(x),

where er = x/r .

◮ Can understand the origin of delta-function term in previous
expression by thinking of proton as a tiny current loop
centered on origin.

◮ All magnetic field-lines generated by loop must pass through
loop.

◮ If size of loop goes to zero then field will be infinite at origin,
and this contribution is represented by delta-function term.

◮ To be slightly more exact, delta-function ensures that
divergence of field is zero everywhere, even at origin.



Hyperfine Structure - III

◮ Hamiltonian of electron in magnetic field generated by proton
is

Hhf = −µe ·B,
where

µe = − e

me
Se .

◮ Here, µe is electron magnetic moment, and Se is electron
spin.

◮ Thus, perturbing Hamiltonian is written

Hhf =
µ0 gp e

2

8πmp me

3 (Sp · er ) (Se · er )− Sp · Se

r3
+
µ0 gp e

2

3mp me

Sp · Se δ
3(x).

◮ Note that, because we have neglected coupling between
proton spin and magnetic field generated by electron’s orbital
motion, previous expression is only valid for l = 0 states.



Hyperfine Structure - IV

◮ According to first-order perturbation theory, energy-shift
induced by spin-spin coupling between proton and electron is
expectation value of perturbing Hamiltonian.

◮ Hence,

∆E =
µ0 gp e

2

8πmp me

〈

3 (Sp · er ) (Se · er )− Sp · Se

r3

〉

+
µ0 gp e

2

3mp me
〈Sp · Se〉 |ψ(0)| 2.

◮ For ground-state of hydrogen, which is spherically symmetric,
first term in previous expression vanishes by symmetry.



Hyperfine Structure - V

◮ Easily demonstrated that |ψ1,0,0(0)| 2 = 1/(π a 3
0 ).

◮ Thus, we obtain

∆E =
µ0 gp e

2

3πmp me a
3
0

〈Sp · Se〉.

◮ Let
S = Se + Sp

be total spin.

◮ We can show that

Sp · Se =
1

2
(S2 − S 2

e − S 2
p ).



Hyperfine Structure - VI

◮ Thus, simultaneous eigenstates of perturbing Hamiltonian and
main Hamiltonian are simultaneous eigenstates of S 2

e , S
2
p ,

and S2.

◮ However, both proton and electron are spin one-half particles.
When two spin one-half particles are combined (in absence of
orbital angular momentum) net state has either spin 1 or spin
0.

◮ There are three spin 1 states, known as triplet states, and a
single spin 0 state, known as singlet state.



Hyperfine Structure - VII

◮ For all states, eigenvalues of S 2
e and S 2

p are (3/4)~ 2.

◮ Eigenvalue of S2 is 0 for singlet state, and 2~ 2 for triplet
states.

◮ Hence,

〈Sp · Se〉 = −3

4
~
2

for singlet state, and

〈Sp · Se〉 =
1

4
~
2

for triplet states.



Hyperfine Structure - VIII

◮ Follows that spin-spin coupling breaks degeneracy of two
1S1/2 states in hydrogen, lifting energy of triplet
configuration, and lowering that of singlet.

◮ This splitting is known as hyperfine structure.

◮ Net energy difference between singlet and triplet states is

∆E =
8

3
gp

me

mp
α2 E0 = 5.88 × 10−6

eV,

where E0 = 13.6 eV is (magnitude of) ground-state energy.



Hyperfine Structure - IX

◮ If we convert previous energy into a wavelength then we obtain

λ = 21.1 cm.

◮ This is wavelength of radiation emitted by a hydrogen atom
which is collisionally excited from singlet to triplet state, and
then decays back to lower energy singlet state.

◮ 21 cm line is famous in radio astronomy because it was used
to map out spiral structure of our galaxy in 1950’s.


