06 - Time-Independent Perturbation Theory

> Aim of Section:
» Introduce time-independent perturbation theory. Applications
include Stark effect, Zeeman effect, fine structure of
hydrogenic atoms, and hyperfine structure of hydrogen atom.



Introduction - |

Consider following common problem. Hamiltonian of a
quantum mechanical system is written

H:Ho—l-Hl.

Here, Hy is a simple Hamiltonian whose eigenvalues and
eigenstates are known exactly.

H, introduces some interesting additional physics into
problem, but is sufficiently complicated that when added to
Hp we can no longer find exact energy eigenvalues and
eigenstates.

However, H; can, in some sense (which we shall specify more
precisely later on), be regarded as small compared to Hp.

Can we find approximate eigenvalues and eigenstates of
modified Hamiltonian, Hy + Hi, by performing some sort of
perturbation expansion about eigenvalues and eigenstates of
original Hamiltonian, Hp?



Introduction - 1l

» In this section, we shall only discuss so-called
time-independent perturbation theory, in which modification
to Hamiltonian, Hy, has no explicit dependence on time.

» It is also assumed that unperturbed Hamiltonian, Hp, is time
independent.



Improved Notation - |

Let the v; be a complete set of eigenstates of Hamiltonian,
H, corresponding to eigenvalues E;: i.e.,

H; = Ej ;.

Expect the ); to be orthonormal.

For spatial wavefunction, this implies that
/w;ﬁ Y dPx = 5.

For spinor, this implies that

Yl = 6.

Generalization to case where ) is a product of a spatial
wavefunction and a spinor is fairly obvious.

(1)

()



Improved Notation - |l

» Can represent all of previous possibilities by writing

(Wily) = (ilj) = by,

» Term in angle brackets represents integral appearing in (1) in
regular space, and spinor product appearing in (2) in
spin-space.

» Advantage of our new notation is its great generality: i.e., it
can deal with both spatial wavefunctions and spinors.



Improved Notation - Il

Expanding general wavefunction, v, in terms of energy
eigenstates, 1;, we obtain

b= citi. (3)
If ¢, is a spatial wavefunction then

¢ = / V¥, d3x.
If ¢, is a spinor then
Ci = 7/J,-T Pa.
Can represent both these possibilities by writing
ci = (Yiliha) = (ila).

Expansion (3) thus becomes

Va =Y (Wilta) i =D (ila) . (4)

i i
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Improved Notation - IV

Incidentally, it follows that

(ila)* = (ali).

Could further generalize (4) by writing

Here, |a) represents 1),, etc.

Likewise, (i| represents 1% (or 1/}? if ¢ is a spinor).
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Improved Notation - V

If Ais a general operator, and wavefunction ), is expanded in
manner shown in (3), then expectation value of A is written

(W) = ¢ Ay ©5)

Here, the A;; are unsurprisingly known as matrix elements of
A.

If ¢, is a spatial wavefunction then

Aj = /¢7A¢j d>x. (6)
If ¢ is a spinor then

Aj =l Ay, (7)



Improved Notation - VI

Can represent both possibilities by writing

Aij = (Wil Alg) = (iAL)-
Expansion (5) thus becomes
(A) = (alAla) = Z<3|i>(f|A|j>(jla>- (8)
Incidentally, follows that
(i) = (j|AT]7).

Finally, it is clear from (8) that
> iyl =

where the ¢); are a complete set of eigenstates, and 1 is
identity operator.



Two-State System - |

Consider simplest possible non-trivial quantum mechanical
system in which there are only two independent eigenstates of
unperturbed Hamiltonian: i.e.,

Ho l1) = E: 1), (9)
Ho |2) = E:[2). (10)

It is assumed that these states, and their associated
eigenvalues, are known.

We also expect states to be orthonormal, and to form a
complete set.
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Two-State System - ||

Let us now try to solve modified energy eigenvalue problem
(Ho + H1) |E) = E|E). (11)

In fact, we can solve this problem exactly.

Because eigenstates of Hy form a complete set, we can write
|E) = (L[E) 1) + (2E) [2). (12)
It follows from (11) that
(i|Ho + Hh|E) = E (i|E), (13)

where i = 1 or 2.



Two-State System - |l|
» (9), (10), (12), (13), and orthonormality condition
(i) = dij,

yield two coupled equations that can be written in matrix
form:

(e e ) (b )-(6)

where

€11 = <1|H1|1>,
en = (2|H1[2),
€12 = <1|H1|2> = <2‘H1‘1>*.

» Here, use has been made of fact that H; is an Hermitian
operator.



Two-State System - |V

» Consider special (but not uncommon) case of perturbing
Hamiltonian whose diagonal matrix elements are zero, so that

e11 = e = 0.

» Solution of (15) (obtained by setting determinant of matrix to
zero) is

(El —|—E2):|: \/(El — E2)2+4|612|2

E =
2

» Expand in supposedly small parameter

e
€= ————.
= =)



Two-State System - V

» We obtain

E~_-(Ei+E)+ ( —E)(1+2e?+--).

l\)ll—l

» Previous expression yields modification of energy eigenvalues
due to perturbing Hamiltonian:

Sy
le12|?

E\=E, —

2T B

» Note that H; causes upper eigenvalue to rise, and lower to fall.



Two-State System - VI

Easily demonstrated that modified eigenstates take form

e*
!1>'=!1>+ﬁ\2>+~-,

2) =2 1
=) - g2 1+
Thus, modified energy eigenstates consist of one of

unperturbed eigenstates, plus a slight admixture of other.
Expansion procedure is only valid when |e| < 1.
This suggests that condition for validity of perturbation
method is

|612| < |E1 — E2|.

In other words, when we say that H; needs to be small
compared to Hp, what we really mean is that previous
inequality must be satisfied.



Non-Degenerate Perturbation Theory - |

Let us generalize perturbation analysis to deal with systems
possessing more than two energy eigenstates.

Consider system in which energy eigenstates of unperturbed
Hamiltonian, Hy, are denoted

Ho [n) = Eq|[n),

where n runs from 1 to V.

Eigenstates are assumed to be orthonormal, so that
(mln) = nm,

and to form a complete set.

Let us now try to solve energy eigenvalue problem for
perturbed Hamiltonian:

(Ho + H1) |E) = E[E).



Non-Degenerate Perturbation Theory - Il

It follows that
(m|Hy + H1|E) = E (m|E),

where m can take any value from 1 to N.

We can express |E) as a linear superposition of unperturbed
energy eigenstates:

E) =) (K|E) k),
k
where k runs from 1 to N.
We can combine previous equations to give
(Em — E + emm) (m|E) + ) emc (k|E) =0,  (19)

k#m

where
emk = (m|H|k). (20)



Non-Degenerate Perturbation Theory - Il

» Let us now develop our perturbation expansion.

We assume that

€mk
E _E " O(e)

for all m # k, where € < 1 is our expansion parameter.
We also assume that

Emm | O(e)
for all m.

Search for a modified version of nth unperturbed energy
eigenstate for which

|E) = |n) + O(e),
and
(n|E)=1,
(m|E) = O(e)

for m # n.



Non-Degenerate Perturbation Theory - IV

» Suppose that we write out (19) for m # n, neglecting terms
that are O(e2) according to our expansion scheme.

» We find that
(Em — En) (m|E) + emn ~ 0,

giving
emn
E)~ ——.
(mlE) = - 22
» Substituting previous expression into (19), evaluated for
m = n, and neglecting O(¢®) terms, we obtain

2
e
(En—E+em)— ) E'"k|E ~ 0.
k+n k — En




Non-Degenerate Perturbation Theory - V

» Thus, modified nth energy eigenstate possesses an eigenvalue

2
e
Ej=En+em+ . [eni + O(e), (21)

and a wavefunction

) =)+ 30 g K OE).(22)
k#n n

> Incidentally, it is easily demonstrated that modified
eigenstates remain orthonormal to O(€?).
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Stark Effect - |

Suppose that hydrogenic atom is subject to uniform external
electric field, of magnitude &£, directed along z-axis.

Hamiltonian of system can be split into two parts.
First, unperturbed Hamiltonian,

p2 Ze2

2m. Amegr

Second, perturbing Hamiltonian,

Hs = e& z. (23)



Stark Effect - Il

» Electron spin is irrelevant to this problem (because spin
operators all commute with Hs), so we can ignore spin
degrees of freedom of system.

» Hence, energy eigenstates of unperturbed Hamiltonian are
characterized by three quantum numbers—radial quantum
number n, and two angular quantum numbers / and m.

» Let us denote energy eigenstates as the |n,/, m), and let their
corresponding energy eigenvalues be the E, | .



Stark Effect - IlI

According to (20), (21), and (23), change in energy of
eigenstate characterized by quantum numbers n,/, m in
presence of small electric field given by

AE, m=e€e&(n,I,m|z|n I, m)

perer y lndmialnltn)?

24
En,l,m - En/,l/,m’ ( )

n’JI"m'#n,lm

This energy-shift is known as Stark effect.



Selection Rules

Sum on right-hand side of (24) seems very complicated.
However, turns out that most of terms in sum are zero.

Follows because matrix elements (n, [, m|z|n’,I', m’) are zero
for virtually all choices of two sets of quantum number, n,/, m
and n',I".m’.

Let us try to find a set of rules that determine when these
matrix elements are non-zero.

These rules are usually referred to as selection rules for
problem in hand.



Selection Rules for m

Recall that
L; =xpy —ypx (25)

It follows that
[L,,z] =0, (26)

because z commutes with all operators on r.h.s. of (25).

Thus,

(n,l,m|[L, 2)|n", /', m'y = (n, |, m|L,z — z L,|n", 1", m")
=h(m—m){(n I, mzn ' m)=0,

because |n, [, m) is eigenstate of L, corresponding to
eigenvalue mh.

Hence, matrix element (n,/, m|z|n’,I', m’) is zero unless

m' = m. (27)



Selection Rules for [ - |
Easily demonstrated that (Hw. 5, Q. 1)
[AB,C]=A[B,C]+[A, C]B, (28)
[A,BC]=BI[A,C]+[A B]C. (29)

Definition of L combined with fundamental commutation
relations for position and momentum yield (Hw. 5, Q. 2)

[L,’,Xj] :ihe,-jkxk. (30)

Now,
[L27z] = [L>2<7Z] + [L}zu 2]7

where use has been made of (26).

So,
(12,2 = L[l 2 + (Lo 2] L+ Ly [y, 2] + Ly 2] Ly

where use has been made of (28).



Selection Rules for [ - |l

So,
[L2,z2] =ih(—Lyy —yLe+ L, x+xL),

where use has been made of (30).

So,
[(2,2] =2ih(L, x — Lyy +ihz), (31)

where use has again been made of (30).
Finally,

[L2,2] =2ih(L, x —yLy) =2ili(xL, — Lyy),  (32)
because —Lyy +ihz= -yl and L, x+ihz=xL,.



Selection Rules for [ - Il

» We can write
[L2,[L?,2]) = 2ih[L%, L, x — Lyy +ihZ],
where use has been made of (31).
» Hence,
(L2112, 2] = 21 ([L%, Lyl x + Ly [L2 ] = L [L2,y] = [L%, L]y
+ih[L?,2])
=2ih(L, [L?,x] — L [L%, y] +1R[L%, 2]),

where use has been made of (29) and fact that L? commutes
with L;.



Selection Rules for [ - IV

> So we get
[L2,[L2,2]] = —4h?L, (yL, — L, z) +4h? L (Lyz — x Ly)
—2R%(L2z - zL?),

where use has been made of cyclic permutations of (32).

> Previous expression can be rearranged to give

(L2, [L2,2]]= —h® {4(Lix+ Lyy+ Lz) L, —4(L+ L]+ L2)z
+2(L2z —zL?)},

where use has been made of (26).
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Selection Rules for [ - V

Hence, we obtain
[ [L2, 2] = —h? {4(Lux+ Lyy + L 2) L, —2(LPz + z [?)}.
It is easily demonstrated that (Hw. 5, Q. 3)
Lix+L,y+L,z=0.
Hence, we get
[L2,[L2,2]] = 2h2 (L2 z + z L?).
Finally, can expand previous equation to give

Yz 212212 +z1* —2h2 (L z+ z[?) = 0. (33)



Selection Rules for / - VI

> (33) yields
(nl,m|l*z =212 21+ z1* —2h? (> z+ zL®)|n', /', m) = 0.

» Because |n, [, m) is eigenstate of L2 corresponding to
eigenvalue /(/ + 1) 712, previous expression yields

{P(+12 =20+ 1) (' + 1)+ "> (/' +1)?
=21(I+1) =2/ (/" +1)}(n, I, m|z|n’,I',m)=0,
which reduces to

I+ 1 +2)(I+ )=V +1)(I =1 —1)(n, I, m|z|n’, ', m) = 0.
(34)



Selection Rules for / - VII

According to (34), matrix element (n,/, m|z|n’, I', m) vanishes
unless | = /" =0or I"=14+1. (Of course, factor | + /' + 2
can never be zero because / and /I can never be negative.)

However, an [ = 0 wavefunction is spherically symmetric.
Follows, from symmetry, that matrix element
(n,1,m|z|n",I',m) is zero when | = /" = 0.

In conclusion, selection rule for / is that matrix element
(n,1,m|z|n" I’ m) is zero unless

/=1+1. (35)



Quadratic Stark Effect

Application of selection rules (27) and (35) to (24) yields

/o 2
AEn,l,m _ 6252 Z |<n7 l,m|z\n 7/ 7m>‘ ] (36)

n=l+1 n,l,m ™ Enlallym

Note that, according to selection rules, all of terms in (24)
that vary linearly with electric field-strength vanish.

Only those terms that vary quadratically with field-strength
survive.

Hence, this type of energy-shift of an atomic state in presence
of a small electric field is known as quadratic Stark effect.
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Electric Polarizability

A neutral atom placed in a small electric field develops an
induced electric dipole moment:

p=af.

Here, « is termed electric polarizability of atom.
Energy change due to induced dipole moment is

=

&
AE:—/ p-dcﬁ'/:—%aé’z. (37)
0

Comparison between (36) and (37) yields following expression
for polarizability of n, m, | state:

/ Ly 2
an,l,m:2e2 Z |<nvE>m|Z|n>E>m>| ] (38)
n/’l/zlil nl7ll7m - n7l7m



Non-Degenerate Perturbation Theory

Unfortunately, (36) predicts infinite energy-shift if there exists
some non-zero matrix element, (n,/, m|z|n’, ', m), that
couples two degenerate unperturbed energy eigenstates: i.e., if
(n,l,mlz|n’,I',m) # 0 and E, | m = Ep pp.m.

Perturbation method breaks down completely in this situation.

Conclude that (36) and (38) are only applicable to cases
where coupled eigenstates are non-degenerate.

For this reason, type of perturbation theory employed here is
known as non-degenerate perturbation theory.

Unperturbed eigenstates of hydrogenic atom have energies
that only depend on radial quantum number, n.

Follows that we can only apply previous results to n =1
eigenstate (because for n > 1 there is coupling to degenerate
eigenstates with same value of n but different values of /).



Polarizability of Hydrogenic Ground-State - |

» According to non-degenerate perturbation theory, polarizability
of ground-state (i.e., n = 1) of a hydrogenic atom is given by

1,0,0|z[n, 1,0)|2
aro0 = 2623 1L0.0m LOI?,

39
prt Enoo — E10,0 (39)

Here, we have made use of fact that £,10 = En0,0.

» Sum in previous expression can be evaluated approximately by
noting that
Z%e?
En,O,O = 2
8megag n

where ag is Bohr radius.



Polarizability of Hydrogenic Ground-State - I

» We can write

3 72¢2
Enoo— E100> E200— E100 =~ .
4 871'60 a0

» This implies that

16
a1,0,0 < §47T60 ao Z (1,0,0]z|n,1,0)| 2.
n>1
» However,
> {1,0,0[z[n,1,0)|*=> (1,0,0|z|n,1,0) (n,1,0]z|1,0,0)

n>1 n>1
= Y (1,0,0{z|n’, /', m') (o', V', m'|2|1,0,0)
n’I",m’

1
=(1,0,0/z%|1,0,0) = 3 (1,0,0/r?|1,0,0),

where use has been made of selection rules, fact that
[n",I',m') form complete set, and fact that ground-state of
hydrogenic atom is spherically symmetric.



Polarizability of Hydrogenic Ground-State - Il

» |n fact, ,
3a
(1,0,0|r2|1,0,0) = Z—g
» Hence, we conclude that
16 4meg ag 4reg ag
1,00 < 3 7 ~53 >z

» Exact result (which can be obtained by solving Schrodinger’s
equation in parabolic coordinates) is

9 47 eg 303 dmeg 303

0Ty Tz T T

(40)



Polarizability of Hydrogenic Ground-State - IV

» In principle, should be able to get result (40) by summing
series (39) exactly.

> | find that 3
@1,00 = A1,0,0 47T;130’
where . 52
A10,0 = I n:zz,:oo ﬁ,
and

In = /0 pte P13 () dp.

» But numerical evaluation of Aj o gives 3.663 not 4.5! Extra
credit opportunity!



Degenerate Perturbation Theory - |

Let us investigate Stark effect in excited (i.e., n > 1) state of
hydrogenic atom using non-degenerate perturbation theory.
We can write

Ho|n,1,m)y = E,|n, I, m), (41)
because energy eigenstates of unperturbed Hamiltonian only
depend on quantum number n.
Making use of selection rules (27) and (35), non-degenerate
perturbation theory yields following expressions for perturbed
energy levels and eigenstates [see (21) and (22)]:

e rin |
nl—E +enlnl+ /I/Z:Iilﬁv (42)
(SR
[n, 1, m)=|n, 1, m) + SRR m),(43)
o =141 En — En

where
€n',I';n,l = <n/7 //7 m‘H5|n> l m>



Degenerate Perturbation Theory - |l

Unfortunately, if n > 1 then summations in previous
expressions are not well defined, because there exist non-zero
matrix elements, e, ./, that couple degenerate eigenstates:
i.e., there exist non-zero matrix elements that couple states
with same value of n, but different values of /.

These particular matrix elements give rise to singular factors
1/(E, — Ep) in summations.

This does not occur if n =1 because, in this case, selection
rule ' =141, and fact that / = 0 (because 0 < / < n), only
allow /" to take single value 1.

Of course, there is no n = 1 state with /' = 1. Hence, there is
only one coupled state corresponding to eigenvalue E;.

However, if n > 1 then there are multiple coupled states
corresponding to eigenvalue Ej,.



Degenerate Perturbation Theory - |lI

Our problem would disappear if matrix elements of perturbed
Hamiltonian corresponding to same value of n, but different
values of /, were all zero: i.e.,

(n,I',m|Hs|n,1,m) = Xp ;6 p. (44)

In this case, all of singular terms in (42) and (43) would
reduce to zero.

Unfortunately, previous equation is not satisfied in general.
Fortunately, we can always redefine unperturbed eigenstates
corresponding to eigenvalue E, in such a manner that (44) is
satisfied



Degenerate Perturbation Theory - IV

Suppose that there are N, coupled eigenstates belonging to
eigenvalue E,,.

Let us define N, new states which are linear combinations of
our N, original degenerate eigenstates:

n /0 m)y = > (n,k,mln, (D) m) [0, k,m). (45)
k=1,N,

Note that new states are also degenerate energy eigenstates of
unperturbed Hamiltonian, Hp, corresponding to eigenvalue E,.

The |n, /M), m) are chosen in such a manner that they are also
eigenstates of perturbing Hamiltonian, Hs: i.e., they are
simultaneous eigenstates of Hy and Hs. Thus,

Hs |n, 1O m) = X,y |n, 1D m). (46)



Degenerate Perturbation Theory - V

The |n, /M), m) are also chosen so as to be orthonormal: i.e.,
(n, 'V mln, 1V m) =5, ,. (47)
It follows that
(n, 'V m|Hs|n, 1D m) = X, 6. (48)

Thus, if we use new eigenstates, instead of old ones, then we
can employ (42) and (43) directly, because all of singular
terms vanish.

Only remaining difficulty is to determine new eigenstates in
terms of original ones.



Degenerate Perturbation Theory - VI

» Now,

Z [n, [, m)(n,I,m| =1,

I=1,N,

where 1 denotes identity operator in sub-space of all coupled
unperturbed eigenstates corresponding to eigenvalue Ej,.

» Using this completeness relation, eigenvalue equation (46) can
be transformed into a straightforward matrix equation:

N (0. m|Hs|n, 1" m) (n. 1" m|n, 1D m)
1"=1,Np

= An(n, I',m|n, /(1), m).



Degenerate Perturbation Theory - VII

» Matrix equation can be written more transparently as
Ux = \x, (49)
where elements of N, x N, Hermitian matrix U are
Us = {n.j, m|Hs|n, k,m). (50)

> (49) can be solved to give N, eigenvalues A, (for / =1 to
N,), with N, corresponding eigenvectors Xp, /-

» Normalized eigenvectors specify weights of new eigenstates in
terms of original eigenstates: i.e.,

(Xn.1)k = (n, k, m|n, /(1),m>, (51)

for k =1to N,.



Degenerate Perturbation Theory - VIII

In our new scheme, (42) and (43) yield

2
(S
L= E it Y €, 1rin 1|

Wtnl=l+1 En— Ev
I 1 m) = [, 1O m) 4 3 | ), m).
Wetnli=l41 "

There are no singular terms in these expressions, because
summations are over n’ # n: i.e., they specifically exclude
problematic, degenerate, unperturbed energy eigenstates

corresponding to eigenvalue Ej,.

Note that first-order energy shifts are equivalent to
eigenvalues of matrix equation (49).

Type of perturbation theory just described is known as
degenerate perturbation theory, for obvious reasons.



Linear Stark Effect - |

Let us examine effect of an external electric field on energy
levels of n = 2 states of a hydrogenic atom.

There are four such states: an / = 0 state, usually referred to
as 25, and three | = 1 states (with m = —1,0, 1), usually
referred to as 2P.

All of these states possess same unperturbed energy,

ZZ e2

E200 = T 55 -
” 327mep ag

As before, perturbing Hamiltonian is

Hs =ef&z.



Linear Stark Effect - Il

According to previously determined selection rules (i.e.,

m' = m, and I'’ =+ 1), perturbing Hamiltonian couples
|2,0,0) and |2,1,0).

Hence, non-degenerate perturbation theory breaks down when
applied to these two states.

On other hand, non-degenerate perturbation theory works fine
for |2,1,1) and |2,1, —1) states, because these are not
coupled to any other n = 2 states by perturbing Hamiltonian.



Linear Stark Effect - Il

In order to apply perturbation theory to |2,0,0) and |2,1,0)
states, we have to solve matrix eigenvalue equation

Ux = Ax,

where U is matrix of matrix elements of H; between states.
Thus,

0, (2,0,0[z[2,1,0)
U=¢e¢& )
(2,1,0|z]2,0,0), 0

where rows and columns correspond to |2,0,0) and |2,1,0),
respectively.



Linear Stark Effect - IV

» Here, have again made use of selection rules, which tell us
that matrix element of z between two hydrogenic atom states
is zero unless states possess / quantum numbers that differ by
unity.

» It is easily demonstrated, from exact forms of 25 and 2P
wavefunctions, that

32

(2,0,002[2,1,0) = (2,1,0[2[2,0,0) = =2



Linear Stark Effect - V

» Can be seen, by inspection, that eigenvalues of U are
M =3ea€/Z and \y = —3eap&/Z.

» Corresponding normalized eigenvectors are
-1/V2
X1 = )
1/v/2

(2
X2 = 1/\/5 .



Linear Stark Effect - VI

» Thus, simultaneous eigenstates of Hy and Hs take form

gy 1200 - 21,0
\/§ )
2y 20,00+ 21,0
7 .

» |n absence of an external electric field, both of these states
possess same energy, E> .

» First-order energy shifts induced by an external electric field
are given by

36805
Z )
3eagé

AEy = — >

AE = +




Linear Stark Effect - VII

Thus, in presence of an electric field, energies of states 1 and
2 are shifted upwards and downwards, respectively, by an
amount 3eap&/Z.

These states are orthogonal linear combinations of original
|2,0,0) and |2,1,0) states.

Note that energy shifts are linear in electric field-strength, so
this effect—which is known as linear Stark effect—is much
larger than quadratic Stark effect.

Note, also, that energies of |2,1,1) and |2,1, —1) states are
not affected by electric field to first order.

Of course, to second order energies of these states are shifted
by an amount that depends on square of electric field-strength.



Relativistic Correction - |

According to special relativity, kinetic energy (i.e., difference
between total energy and rest mass energy) of a particle of
rest mass m and momentum p is

p2c2+ m2ch—
In non-relativistic limit p < mc, can expand square-root in
previous expression to give
2
1 2 4
_ P2y o (YY),
2m 4 \mc mc

Hence,

Recognize first term on right-hand side of previous equation
as standard non-relativistic expression for kinetic energy.
Second term is lowest-order relativistic correction to kinetic
energy.



Relativistic Correction - Il

» Consider effect of relativistic correction on energy levels of a
hydrogenic atom.

» Perturbing Hamiltonian takes form

4

Hoe - _P'
8m3c?’

» According to first-order perturbation theory, lowest-order
relativistic correction to energy of a hydrogenic atom state
characterized by standard quantum numbers n, /, and m is

AEn’hm: <n7l7m|HR|n7/7m>:_ n,/,m|p4|n,/,m>

8m3c2<

e

1
= Temid (n, 1, m|p? p|n, I, m).
e



Relativistic Correction - IlI

» However, Schrodinger’s equation for a unperturbed hydrogenic
atom can be written

p%|n,l,m)y=2me(E, — V)|n, I, m),

where V = —Z e?/(4req r).
» Because p? is Hermitian operator, follows that

1
AEn m= Tom.c2 (n, 1, m|(En — V)2|n, [, m)

1

=5 (En2—2E,, (n,1,m|V|n,I,m) + (n,1,m|V?|n,I, m))
e
1 Z e? 1 Ze2\’ /1

=— E2+2F = i

2 me c? n n(47‘(’€0><r>+<4ﬂ'60> <r2>




Relativistic Correction - IV

» However,
ZZ e2
E,= I
8megag n
1 Z
r/  agn?’

Nz
r2)  agn(l+1/2)
» Hence, we obtain

2 .2
AE, . —E 2 (1 _3)
" n? \I+1/2 4

where a = 2 /(4meg hc) ~ 1/137 is dimensionless fine
structure constant.

(52)



Darwin Term - |

» According to Dirac's relativistic electron theory, there is
additional relativistic correction to Hamiltonian of electron in
hydrogenic atom that takes form

Z e h? 3

HD = ) (X)

22
8egmsc

» This correction known as Darwin term.

» According to first-order perturbation theory, correction to
energy of a hydrogenic atom state characterized by standard
quantum numbers n, /, and m due to Darwin term is

Ze*h?

AEn 1 m = (n,I,mHp|n,I,m) = 8o m2 =

|¢n,/,m( )| .



Darwin Term - |l

» However,
1 7 \3/2
im0 = — | — 61.00m.o0-
nsm@ == (5] rodmg
» Hence, we obtain
ZZ 2
AEn,I,m = _En na 5/,0‘ (53)

» Note that Darwin term only modifies energies of / = 0 states.



Spin-Orbit Coupling - |
Electron in a hydrogenic atom experiences an electric field

Z
E- 2%
4meg r3

due to charge on nucleus.

However, according to electromagnetic theory, a
non-relativistic particle moving in an electric field E with
velocity v also experiences an effective magnetic field

B:_v><E

c2

Recall, that an electron possesses a magnetic moment

e
p=—-—=5
me

due to its spin angular momentum, S.



Spin-Orbit Coupling - I

» Expect additional contribution to Hamiltonian of a hydrogenic
atom of form

His=—-p-B
7 2
- %% _ _uxx-S
Ameg me c2 r3
7 2
° L-S,

- 22,3
4megmg cer
where L = me x X v is electron’s orbital angular momentum.

» This effect known as spin-orbit coupling.

» Previous expression is too large, by a factor 2, due to obscure
relativistic effect known as Thomas precession.

» Hence, true spin-orbit correction to Hamiltonian is

Ze?

- __ %% _ L.s 54
8meg m2 c? r3 (54)

His



Spin-Orbit Coupling - Il

> Now
J=L+S
is total angular momentum of electron.
» Hence,
J2=12+5%4+2L-5S,
giving

L-S=-(J2-1*-5%.

N -



Spin-Orbit Coupling - IV

Recall that while J2 commutes with both L2 and S2, it does
not commute with either L, or S,.

Follows that perturbing Hamiltonian (54) also commutes with
both L2 and S2, but does not commute with either L, or S,.

Hence, simultaneous eigenstates of unperturbed and
perturbing Hamiltonians are simultaneous eigenstates of 12,
S2 and J2.

Important to know this because we can only safely apply
perturbation theory to simultaneous eigenstates of
unperturbed and perturbing Hamiltonians.



Spin-Orbit Coupling - V

> Let |/,s;j, m;) be a simultaneous eigenstate of 12, 82, J2,
and J, corresponding to eigenvalues

L1, s;j,mp) = 1(I+ 1) h?|l,s;], m;),
S2|l,s;j,m))=s(s+1)h2|l,s;j, m),
2 s gy mp)y =i G+ 1) R2 1,504, mj),
Iz \l;s;j,mj) = m;hll,s; j, mj).



Spin-Orbit Coupling - V

» According to first-order perturbation theory, energy-shift
induced in simultaneous eigenstate by spin-orbit coupling is

AE/,1/2;j,mj = </7 1/21./7 mj|HL5|/a 1/2-.13 mj>
Z e? J2—12-52

== (1,1/2;j,m;
167reom§C2< /250 m; r3

1,1/2; ], mj>

Ze?h? . 1
= Treomi [G+1)—1(/41)—3/4] <F>

» Here, we have made use of fact that s = 1/2 for an electron.
» Note that energy-shift is zero for / = 0 state (because
J =1/2). More directly, L =0 in an / = 0 state, and
perturbing Hamiltonian is proportional to L - S.



Spin-Orbit Coupling - VI

» For an / > 0 state,

1 B Z3
<ﬁ> R l(+1/2)(1+1)

» Hence,

AE/,1/2;j,mj =E,

Z20% (n[3/4+1(1+1)—j(i+1)]
n2 { 21(1+1/2)(1+1) }(1 —52,0)-)
55

> Note that j = /+1/2 for an / > 0 state.



Fine Structure - |

Have found three perturbing Hamiltonians that all give rise to
energy-shifts of nth energy level of a hydrogenic atom that are
similar in magnitude.

Perturbing Hamiltonians are that due to relativistic correction,
Hg, that due to Darwin term, Hp, and that due to spin-orbit
coupling, Hs.
Corresponding energy-shifts are given in (52), (53), and (55),
respectively.
Let us sum energy-shifts. There are three cases to consider.

1. /=0andj=1/2.

2. />0andj=1/-1/2,

3. I>0andj=1/+1/2.



Fine Structure - |l

» For | =0, j =1/2 case, find

72 a? 3
AEnJ: EnT |:<2n—z> —n+0:|

7202 n 3
=E, - —— .
n? <j+1/2 4) (56)



Fine Structure - |l

» For | >0, j =1—1/2 case, find
2 2 g
AE,; = £, 22 [( . —§>+0+(”[3/4+’(’+1) J(J+1)]>

o [\I+1/2 4 21(1+1/2) (1 +1)
Z2a2 n[3/4+31(+1)—jG+1)] 3
21(1+1/2)(1+1) 4

I1

Z“<2 n2(+1)( +3/2)] 3)

n?

(J+1/2 G+1)(+3/2) 4

28 (- 2) &)




Fine Structure - IV

» For | >0, j =1+ 1/2 case, find
72 a? n 3 n[3/441(1+1)—j(+1)]

Abnj=En =5 {</+1/2_Z>+0+( 210+1/2)(+1) )
22 2[ n[B/4+31(1+1)—j(+1)] 3]

21(1+1/2)(1+1) 4
72« 2( n2( —1/2)J] 3)
En 2

G-1/2)j(G+1/2) 4

ZZSQ -2). (58)




Fine Structure - V

> In all three cases, (56), (57), and (58), we find that
Z%a? n 3
A, i =E — | ——— — - |.
’ n? <J +1/2 4) 59)

» This modification of energy levels of a hydrogenic atom due
to a combination of relativity and spin-orbit coupling is known
as fine structure.



Fine Structure - VI

Note that if we solve energy eigenstate problem for a
hydrogenic atom using relativistic quantum mechanics (i.e.,
Dirac equation), we get exact result

E,; Z2a? -1/2
ELYN— i . - i .
me c2 { (n—J—1/2+[(J+1/2)2—22042]1/2)2}

Expansion in small parameter Z « yields

Enj Z%0%  Z%a4 n 3
mec? 2 n? 2n* \j+1/2 4

) O(Z a)®.

First term on r.h.s. of previous expression corresponds to
electron rest mass energy.

Second term is standard non-relativistic expression for energy
levels of hydrogenic atom.

Third term is fine-structure correction to these energy levels.



Fine Structure - VII

» Conventional to refer to energy eigenstates of a hydrogenic
atom that are also simultaneous eigenstates of J? as nL;
states, where n is radial quantum number,
L=(S,P,D,F,---)as/=(0,1,2,3,---), and j is total
angular momentum quantum number.

» Let us examine effect of fine structure energy-shift (59) on
these eigenstates for n = 1,2 and 3.



Fine Structure - VIII

» For n =1, in absence of fine structure, there are two
degenerate 15; ), states.

» According to (59), fine-structure induced energy-shifts of
these two states are same.

» Hence, fine structure does not break degeneracy of two 15;
states of hydrogenic atom.



Fine Structure - IX

» For n =2, in absence of fine structure, there are two 25; )
states, two 2P1/2 states, and four 2P3/2 states, all of which
are degenerate.

» According to (59), fine-structure induced energy-shifts of
2515 and 2Py, states are same as one another, but are
different from induced energy-shift of 2P3/, states.

» Hence, fine structure does not break degeneracy of 25; , and
2Py, states of hydrogenic atom, but does break degeneracy
of these states relative to 2P, states.



Fine Structure - X

For n = 3, in absence of fine structure, there are two 351/2
states, two 3Py ), states, four 3P3), states, four 3D3); states,
and six 3055 states, all of which are degenerate.

According to (59), fine structure breaks these states into three
groups: 351/, and 3Py, states, 3Pz, and 3D;, states, and
3Ds ), states.

Effect of fine-structure energy-shift on n =1, 2, and 3 energy
states of a hydrogenic atom is illustrated on next slide.



3Ds5)2
3P3/2
3512

2512

1Sy )2

unperturbed
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Zeeman Effect - |

» Consider a hydrogenic atom placed in a uniform z-directed
external magnetic field of strength B = Be,.

» Modification to Hamiltonian of system is
HZ = K- B7

where
e

“:_2m

(L+25)

e
is total electron magnetic moment, including both orbital and
spin contributions.

» Thus, B
e
Hy = — (L, +285,).
7 =5 (L +25) (60)



Zeeman Effect - |l

Suppose that applied magnetic field is much weaker than
atom'’s internal magnetic field.
Internal magnetic field in hydrogen atom specified by

vxE
Bint:T7
ex
E= 3
dmeg r

But, v ~ ac and r ~ ag, so we get

Here,
=5.788 x 107 °eV/T

_eh
uB = 2 me

is known as Bohr magnetron.
Hence, weak field ordering valid as long as applied magnetic
field strength is much less than 12.5T.



Zeeman Effect - Il

> In weak field limit, can treat Hz as small perturbation acting
on simultaneous eigenstates of unperturbed Hamiltonian and
fine-structure Hamiltonian. (Because |Biy| > |B| implies that
His > Hz.)

» These states are simultaneous eigenstates of 12,52 J2, and
J,. (Because energy depends on quantum number j, but is
independent of / or m.)

» Hence, from standard perturbation theory, first-order
energy-shift induced by a weak external magnetic field is

AE/,1/2;j,mj = </7 1/2'./7 mj‘HZ“7 1/2v./7 mj>

eB . .
=— (mih+(1,1/2;j,m;|S;|1,1/2;j, m;})),

2me
(61)

because J, = L, + S,.



Zeeman Effect - IV

However,

. 1/2
. J+mj
|J,m,->=(2,+{) mj—1/2,1/2)’

= m\ Y2
i ) _ /
+ <2l+ 1> mj+1/2,-1/2)  (62)

when j =1+ 1/2, and

, 1/2
_ J+1—m;
U, mj) = (ﬁ) Imj —1/2,1/2)’

. 1/2
J+1+m; /
— | i +1/2,—-1/2 63
() imra2-12 (6
when j =1/—-1/2.

Here, the |m, ms)" are simultaneous eigenstates of 12, 5%, L,,
and S, whereas the |}, mj> are simultaneous eigenstates of L2
S2,J2, and J,.



Zeeman Effect - V

» In particular,
!/ FL /
S. |m, £1/2)' = &5 |m, £1/2). (64)
» Follows from (62) and (64) that

</7 1/21./7 m_l|52‘/7 1/21./7 m_l>: (/7 mj|52|./7 mj>
_hfj+mi\ R (j—m;
S 2\2/+1 2\2/+1

= (65)

when j =1+1/2.



Zeeman Effect - VI

» Likewise, follows from (63) and (64) that

(1,1/2; j,mj|S|1,1/2; j, mj) = (j, mj|S;|j, mj)

_E j—i—l—mj _E j+1+mj
2 2/+1 2 2/+1
mjh

= — 66
2/+1’ (66)

when j =1/-1/2.



Zeeman Effect - VII

» Follows from (61), (65), and (66) that

1
AE/,1/2;j,mj = Uup B m_, <1 + > / T 1); (67)

where + signs correspond to j =/ +1/2.

» Induced energy-shift when a hydrogenic atom is placed in an
external magnetic field known as Zeeman effect.



>

Zeeman Effect - VIII

Quantum number m; takes values differing by unity in range
—j toJ.

Follows from (67) that Zeeman effect splits degenerate states
characterized by j =/ + 1/2 into 2 + 1 equally spaced states
of interstate spacing

2142
AEj—/+1/2:MBB<2/+1>- (68)
Zeeman effect splits degenerate states characterized by
Jj=1—1/2into 2j + 1 equally spaced states of interstate
spacing

2/
AE;_ = B .
j=1-1/2 = KB <2l+ 1) (69)



Zeeman Effect - IX

> In presence of weak external magnetic field, two degenerate
15, states of hydrogenic atom are split by 2 g B.

» Four degenerate 25, and 2Py, states are split by
(2/3) ug B, whereas four degenerate 2P;/, states are split by

(4/3) g B.



Zeeman Effect - X

2Py

2812 2Py

151/2 )

unperturbed + fine structure

> Here, e = ug B.

2¢

+ Zeeman



Zeeman Effect - Xl

We need to check that Zeeman Hamiltonian does not couple
degenerate simultaneous eigenstates of unperturbed and
fine-structure Hamiltonians, because, if it does, our
perturbation expansion will break down at second order.

Simultaneous eigenstates of unperturbed and fine-structure
Hamiltonians are the |/,1/2; j, mj).

11,1/2;j,m;) and [I',1/2;j', m}) are degenerate if j = j'.
So we need to prove that all matrix elements of form

(1,1/2;, mi|Hz|I',1/2; j, m}) (70)

are zero, unless | = /" and m; = mj/-.



Zeeman Effect - XI|

» In fact, Hy commutes with L2 and J,. Hence, Hz, L?, and J,
have simultaneous (orthonormal) eigenstates, which implies
that matrix elements of form (70) are indeed zero if / # I’ or
mj # m’. (This is true even if j # j'.)

» Note that Hz does not commute with J2. Hence, matrix
elements of form

(1,1/2;j, mj|Hz|1,1/2; ', my)

can be non-zero when j # j’. However, this is not a problem
because coupled states are non-degenerate.



Zeeman Effect - XIlI

» Because the |/,1/2;j, m;) are not simultaneous eigenstates of
unperturbed and perturbing Hamiltonians, (68) and (69) can
only be regarded as expectation values of magnetic-
field-induced energy-shifts.

» However, as long as external magnetic field is much weaker
than internal magnetic field, these expectation values are
almost identical to actual measured values of energy-shifts.



Hyperfine Structure - |

» Proton in a hydrogen atom is spin one-half charged particle,
and therefore possesses a magnetic moment.

» |n fact,
8p €

:2mp

Hp p>

where p, is proton magnetic moment, S is proton spin, and
proton gyromagnetic ratio g, is found experimentally to take
value 5.59.

» Note that magnetic moment of proton is much smaller (by a
factor of order me/m,) than that of electron.



Hyperfine Structure - I

According to classical electromagnetism, proton’s magnetic
moment generates a magnetic field of form

Ho

2 o
- 47 13 [3 (l“l‘p : er) e — lJ‘p] + — Hp 53()()7

3

where e, = x/r.

Can understand the origin of delta-function term in previous
expression by thinking of proton as a tiny current loop
centered on origin.

All magnetic field-lines generated by loop must pass through
loop.

If size of loop goes to zero then field will be infinite at origin,
and this contribution is represented by delta-function term.

To be slightly more exact, delta-function ensures that
divergence of field is zero everywhere, even at origin.



Hyperfine Structure - Il

Hamiltonian of electron in magnetic field generated by proton
is

th = —HMe- B7
where .
- Zs..
He m, e

Here, p, is electron magnetic moment, and S, is electron
spin.
Thus, perturbing Hamiltonian is written

H, — ,Ungpe2 3(sp'er)(se'er)_sp'se Hnge2
hf = 3 +
8m my, me r 3 mp me

S, - Sed3(x).

Note that, because we have neglected coupling between
proton spin and magnetic field generated by electron’s orbital
motion, previous expression is only valid for / = 0 states.



Hyperfine Structure - IV

» According to first-order perturbation theory, energy-shift
induced by spin-spin coupling between proton and electron is
expectation value of perturbing Hamiltonian.

» Hence,
AE_ Mogpe® <3(s,,-e,)(se-er)—s,,-se>
81 m, me r3
2
e
+ 08 ° (s, .s.)4(0)|2.

3 mp me

» For ground-state of hydrogen, which is spherically symmetric,
first term in previous expression vanishes by symmetry.



v

v

v

Hyperfine Structure - V

Easily demonstrated that [1)100(0)|? = 1/(7 ad).

Thus, we obtain

2

Mo 8p €
AE = ———"— (S, -S,).
37Tmpmeag’< pSe

Let
S=S.+S,

be total spin.

We can show that

Sy Se==(5*-52-57).

N =



Hyperfine Structure - VI

» Thus, simultaneous eigenstates of perturbing Hamiltonian and
main Hamiltonian are simultaneous eigenstates of S2, sz,
and S2.

» However, both proton and electron are spin one-half particles.
When two spin one-half particles are combined (in absence of
orbital angular momentum) net state has either spin 1 or spin
0.

» There are three spin 1 states, known as triplet states, and a
single spin O state, known as singlet state.



Hyperfine Structure - VII

> For all states, eigenvalues of 52 and S2 are (3/4) h?.

» Eigenvalue of S? is 0 for singlet state, and 2 12 for triplet
states.

» Hence,

3

<Sp N Se> — —Z h2

for singlet state, and
1 5
<sp "Se) = 4 h

for triplet states.



Hyperfine Structure - VIII

» Follows that spin-spin coupling breaks degeneracy of two
15/, states in hydrogen, lifting energy of triplet
configuration, and lowering that of singlet.

» This splitting is known as hyperfine structure.

» Net energy difference between singlet and triplet states is

8 me _
AE:§ng—pa2Eoz5.88>< 107%eV,

where Eg = 13.6eV is (magnitude of) ground-state energy.



Hyperfine Structure - IX

If we convert previous energy into a wavelength then we obtain
A=21.1cm.

This is wavelength of radiation emitted by a hydrogen atom
which is collisionally excited from singlet to triplet state, and
then decays back to lower energy singlet state.

21 cm line is famous in radio astronomy because it was used
to map out spiral structure of our galaxy in 1950’s.



