
04 - Addition of Angular Momentum

I Aim of Section:
I Brief review of material on addition of angular momentum

presented in previous course (PHY 373).



Introduction

I An electron possesses orbital angular momentum, L, due to its
motion in space.

I An electron also possesses an intrinsic spin angular
momentum, S.

I Hence, electron possesses total angular momentum,
J = L + S.

I What is the relationship between operators used to represent
total angular momentum and those used to represent orbital
and spin angular momentum in quantum mechanics?



Commutation Relations - I

I Three operators used to represent Cartesian components of L
obey commutation relations that can be written in convenient
vector form:

L× L = i ~L.

I Likewise, three operators used to represent Cartesian
components of S obey commutation relations:

S× S = i ~S.

I Orbital angular momentum operators associated with motion
through space. Spin angular momentum operators associated
with internal ‘motion’. Two types of motion completely
unrelated. Suggests that two sets of operators commute with
one another: i.e.,

[Li ,Sj ] = 0,

where i , j = 1, 2, 3 corresponds to x , y , z .



Commutation Relations - II

I Consider
J = L + S.

I Follows that

J× J= (L + S)× (L + S)

= L× L + S× S + L× S + S× L = L× L + S× S

= i ~ (L + S) = i ~ J.

I In other words,
J× J = i ~ J.

I Evident that three fundamental total angular momentum
operators, Jx , Jy , and Jz , obey analogous commutation
relations to corresponding orbital and spin angular momentum
operators.



Eigenstates of Total Angular Momentum

I Follows, by analogy with orbital and spin angular momentum,
that only possible to simultaneously measure
magnitude-squared of total angular momentum,

J 2 = J 2
x + J 2

y + J 2
z ,

and one Cartesian component of J. Choose to measure Jz .

I Simultaneous eigenstate of J 2 and Jz written

J 2 ψj ,mj
= j (j + 1) ~2 ψj ,mj

,

Jz ψj ,mj
= mj ~ψj ,mj

,

where quantum number j can take integer or half-integer
values, and quantum number mj takes values in range

−j ,−j + 1, · · · , j − 1, j .



Compatible Measurements - I

I Now,

J 2 = (L + S) · (L + S) = L 2 + S 2 + 2L · S,

which can also be written

J 2 = L 2 + S 2 + 2 Lz Sz + L+ S− + L− S+.

I Know that L 2 commutes with itself, and all Cartesian
components of L, and with all spin operators. Follows that

[J 2, L 2] = 0.

I Similar arguments yields

[J 2,S 2] = 0.



Compatible Measurements - II

I Lz commutes with itself, with L 2, and with all spin operators,
but not with L+ and L−. Hence, we conclude that

[J 2, Lz ] 6= 0.

I A similar argument yields

[J 2, Sz ] 6= 0.

I Finally,
Jz = Lz + Sz ,

where [Jz , Lz ] = [Jz ,Sz ] = 0.



Compatible Measurements - III

I Evident that are two alternative sets of physical variables
associated with angular momentum that can be
simultaneously measured:

1. L 2, S 2, Lz , Sz , Jz .
2. L 2, S 2, J 2, Jz .

I Let ψ
(1)
l ,s;m,ms

be simultaneous eigenstate of L 2, S 2, Lz , Sz , Jz
corresponding to eigenvalues

L 2 ψ
(1)
l ,s;m,ms

= l (l + 1) ~2 ψ(1)
l ,s;m,ms

,

S 2 ψ
(1)
l ,s;m,ms

= s (s + 1) ~2 ψ(1)
l ,s;m,ms

,

Lz ψ
(1)
l ,s;m,ms

= m ~ψ(1)
l ,s;m,ms

,

Sz ψ
(1)
l ,s;m,ms

= ms ~ψ
(1)
l ,s;m,ms

.



Compatible Measurements - IV

I Easily seen that

Jz ψ
(1)
l ,s;m,ms

= (Lz + Sz)ψ
(1)
l ,s;m,ms

= (m + ms) ~ψ(1)
l ,s;m,ms

= mj ~ψ
(1)
l ,s;m,ms

.

I Hence,
mj = m + ms .



Compatible Measurements - V

I Let ψ
(2)
l ,s;j ,mj

be simultaneous eigenstate of L 2, S 2, J 2, and Jz
corresponding to eigenvalues

L 2 ψ
(2)
l ,s;j ,mj

= l (l + 1) ~2 ψ(2)
l ,s;j ,mj

,

S 2 ψ
(2)
l ,s;j ,mj

= s (s + 1) ~2 ψ(2)
l ,s;j ,mj

,

J 2 ψ
(2)
l ,s;j ,mj

= j (j + 1) ~2 ψ(2)
l ,s;j ,mj

,

Jz ψ
(2)
l ,s;j ,mj

= mj ~ψ
(2)
l ,s;j ,mj

.



Total Angular Momentum of Electron - I

I For electron, simultaneous eigenstate of L 2 and Lz associated
with angular wavefunction Ym

l (θ, φ). Here, l is non-negative
integer, and m is integer lying in range −l ≤ m ≤ l .

I Simultaneous eigenstate of S 2 and Sz characterized by
quantum numbers s = 1/2 and ms = ±1/2, and associated
with spinors χ1/2,±1/2 ≡ χ±.

I Can express simultaneous eigenstate of L 2, S 2, Lz , and Sz in
product form

ψ
(1)
l ,1/2;m,±1/2 = Ym

l χ±.

I Orbital angular momentum operators act on spherical
harmonic functions, Ym

l , whereas spin angular momentum
operators act on spinors, χ±.



Total Angular Momentum of Electron - II

I Because eigenstates ψ
(1)
l ,1/2;m,±1/2 are (presumably)

orthonormal, and form a complete set, we can express

eigenstates ψ
(2)
l ,1/2;j ,mj

as linear combinations of them: e.g.,

ψ
(2)
l ,1/2;j ,m+1/2 = αψ

(1)
l ,1/2;m,1/2 + β ψ

(1)
l ,1/2;m+1,−1/2,

where α and β are, as yet, unknown coefficients.

I Number of ψ(1) states that can appear on right-hand side of
the previous expression is limited to two by constraint that
mj = m + ms , and fact that ms can only take values ±1/2.

I Assuming that ψ(2) eigenstates are properly normalized, we
have

α2 + β 2 = 1. (1)



Total Angular Momentum of Electron - III

I Now,

J 2 ψ
(2)
l ,1/2;j ,m+1/2 = j (j + 1) ~2 ψ(2)

l ,1/2;j ,m+1/2, (2)

where

J 2 = L 2 + S 2 + 2 Lz Sz + L+ S− + L− S+. (3)

I Moreover,

ψ
(2)
l ,1/2;j ,m+1/2 = αYm

l χ+ + β Ym+1
l χ−. (4)



Total Angular Momentum of Electron - IV

I Now,

L+ Ym
l = [l (l + 1)−m (m + 1)]1/2 ~Ym+1

l , (5)

L− Ym
l = [l (l + 1)−m (m − 1)]1/2 ~Ym−1

l , (6)

S+ χs,ms = [s (s + 1)−ms (ms + 1)]1/2 ~χs,ms+1, (7)

S− χs,ms = [s (s + 1)−ms (ms − 1)]1/2 ~χs,ms−1. (8)

I For case of spin one-half spinors,

S+ χ+ = S− χ− = 0, (9)

S± χ∓ = ~χ±, (10)

S 2 χ± =
3

4
~2 χ±. (11)



Total Angular Momentum of Electron - V

I (3), (5), (6), and (9)–(11) yield

J 2 Ym
l χ+ = [l (l + 1) + 3/4 + m] ~2 Ym

l χ+

+[l (l + 1)−m (m + 1)]1/2 ~2 Ym+1
l χ−, (12)

and

J 2 Ym+1
l χ− = [l (l + 1) + 3/4−m − 1] ~2 Ym+1

l χ−

+[l (l + 1)−m (m + 1)]1/2 ~2 Ym
l χ+. (13)



Total Angular Momentum of Electron - VI

I (2), (4), (12), and (13) yield

(x −m)α− [l (l + 1)−m (m + 1)]1/2 β= 0, (14)

−[l (l + 1)−m (m + 1)]1/2 α + (x + m + 1)β= 0, (15)

where
x = j (j + 1)− l (l + 1)− 3/4.

I (14) and (15) can be solved to give

x (x + 1) = l (l + 1),

and
α

β
=

[(l −m) (l + m + 1)]1/2

x −m
. (16)



Total Angular Momentum of Electron - VII

I Follows that x = l or x = −l − 1, which corresponds to
j = l + 1/2 or j = l − 1/2, respectively.

I Once x is specified, (1) and (16) can be solved to give α and
β.

I Obtain

ψ
(2)
l+1/2,m+1/2 =

(
l + m + 1

2 l + 1

)1/2

ψ
(1)
m,1/2 +

(
l −m

2 l + 1

)1/2

ψ
(1)
m+1,−1/2,

(17)

ψ
(2)
l−1/2,m+1/2 =

(
l −m

2 l + 1

)1/2

ψ
(1)
m,1/2 −

(
l + m + 1

2 l + 1

)1/2

ψ
(1)
m+1,−1/2.

(18)

I Here, have neglected common superscripts l , 1/2 for sake of

clarity: e.g., ψ
(2)
l+1/2,m+1/2 ≡ ψ

(2)
l ,1/2;l+1/2,m+1/2.



Total Angular Momentum of Electron - VIII

I Previous two equations can be inverted to give

ψ
(1)
m,1/2 =

(
l + m + 1

2 l + 1

)1/2

ψ
(2)
l+1/2,m+1/2 +

(
l −m

2 l + 1

)1/2

ψ
(2)
l−1/2,m+1/2,

(19)

ψ
(1)
m+1,−1/2 =

(
l −m

2 l + 1

)1/2

ψ
(2)
l+1/2,m+1/2 −

(
l + m + 1

2 l + 1

)1/2

ψ
(2)
l−1/2,m+1/2.

(20)



l = 1 States - I

I As an example, consider l = 1 states.

I Eigenstates of L 2, S 2, Lz , and Sz denoted ψ
(1)
m,ms . Because m

can take values −1, 0, 1, whereas ms can take values ±1/2,

there are clearly six such states. That is, ψ
(1)
1,±1/2, ψ

(1)
0,±1/2, and

ψ
(1)
−1,±1/2.

I Eigenstates of L 2, S 2, J 2, and Jz denoted ψ
(2)
j ,mj

. Because j

can take values l + 1/2 = 3/2 and l − 1/2 = 1/2, there are

also six such states. That is, ψ
(2)
3/2,±3/2, ψ

(2)
3/2,±1/2, and

ψ
(2)
1/2,±1/2.



l = 1 States - II

I According to (17)–(20) various different states interrelated as
follows:

ψ
(2)
3/2,±3/2 = ψ

(1)
±1,±1/2, (21)

ψ
(2)
3/2,1/2 =

√
2

3
ψ
(1)
0,1/2 +

√
1

3
ψ
(1)
1,−1/2, (22)

ψ
(2)
1/2,1/2 =

√
1

3
ψ
(1)
0,1/2 −

√
2

3
ψ
(1)
1,−1/2, (23)

ψ
(2)
1/2,−1/2 =

√
2

3
ψ
(1)
−1,1/2 −

√
1

3
ψ
(1)
0,−1/2, (24)

ψ
(2)
3/2,−1/2 =

√
1

3
ψ
(1)
−1,1/2 +

√
2

3
ψ
(1)
0,−1/2. (25)



l = 1 States - III

I Furthermore,

ψ
(1)
±1,±1/2 = ψ

(2)
3/2,±3/2, (26)

ψ
(1)
1,−1/2 =

√
1

3
ψ
(2)
3/2,1/2 −

√
2

3
ψ
(2)
1/2,1/2, (27)

ψ
(1)
0,1/2 =

√
2

3
ψ
(2)
3/2,1/2 +

√
1

3
ψ
(2)
1/2,1/2, (28)

ψ
(1)
0,−1/2 =

√
2

3
ψ
(2)
3/2,−1/2 −

√
1

3
ψ
(2)
1/2,−1/2, (29)

ψ
(1)
−1,1/2 =

√
1

3
ψ
(2)
3/2,−1/2 +

√
2

3
ψ
(2)
1/2,−1/2. (30)



l = 1 States - IV

I If we know that electron in l = 1 state characterized by m = 0

and ms = 1/2 [i.e., state represented by ψ
(1)
0,1/2] then,

according to (28), measurement of total angular momentum
will yield j = 3/2, mj = 1/2 with probability 2/3, and
j = 1/2, mj = 1/2 with probability 1/3.

I Suppose we make such a measurement, and obtain result
j = 3/2, mj = 1/2. As a result of measurement, electron is

thrown into corresponding eigenstate, ψ
(2)
3/2,1/2. Follows from

(22) that subsequent measurement of Lz and Sz will yield
m = 0, ms = 1/2 with probability 2/3, and m = 1,
ms = −1/2 with probability 1/3.



Two-Electron States - I

I Consider system consisting of two electrons. Suppose that
system does not possess any orbital angular momentum.

I Let S1 and S2 be spin angular momentum operators of the
first and second electrons, respectively, and let

S = S1 + S2

be total spin angular momentum operator.

I By analogy with previous analysis, possible to simultaneously
measure either S 2

1 , S 2
2 , S 2, and Sz , or S 2

1 , S 2
2 , S1z , S2z , and

Sz .

I Let quantum numbers associated with measurements of S 2
1 ,

S1z , S 2
2 , S2z , S 2, and Sz be s1, ms1 , s2, ms2 , s, and ms ,

respectively.



Two-Electron States - II

I Because both electrons are spin one-half particles,
s1 = s2 = 1/2, and s1z , s2z = ±1/2.

I Furthermore, by analogy with previous analysis,

ms = ms1 + ms2 .

I Saw that when spin l is added to spin 1/2 then possible values
of total angular momentum quantum number are j = l ± 1/2.

I By analogy, when spin 1/2 is added to spin 1/2 then possible
values of total spin quantum number are s = 1/2± 1/2.

I In other words, two-electron state (with zero orbital angular
momentum) either possesses overall spin s = 1, or overall spin
s = 0.



Two-Electron States - III
I To be more exact, there are three possible s = 1 states

(corresponding to ms = −1, 0, 1), and one possible s = 0
state (corresponding to ms = 0).

I Three s = 1 states are known as triplet states, whereas s = 0
state known as singlet state.

I Triplet states take form:

χ
(2)
1,−1 = χ

(1)
−1/2,−1/2,

χ
(2)
1,0 =

1√
2

(
χ
(1)
−1/2,1/2 + χ

(1)
1/2,−1/2

)
,

χ
(2)
1,1 = χ

(1)
1/2,1/2.

I Singlet state written

χ
(2)
0,0 =

1√
2

(
χ
(1)
−1/2,1/2 − χ

(1)
1/2,−1/2

)
.


