02 - Orbital Angular Momentum

▶ Aim of Section:

 Brief review of material on orbital angular momentum presented in previous course (PHY 373).

Angular Momentum - I

▶ In classical mechanics, orbital angular momentum, L, of point particle of position vector, x, and linear momentum, p, is

$$\mathbf{L} = \mathbf{x} \times \mathbf{p}$$
.

Follows that

$$L_{x} = y p_{z} - z p_{y}, \tag{1}$$

$$L_{y} = z \, p_{x} - x \, p_{z}, \tag{2}$$

$$L_z = x p_y - y p_x. (3)$$

▶ In quantum mechanics, we represent three Cartesian components of L by quantum mechanical versions of above three expressions (in which components of x are represented as algebraic operators, and components of p are represented as differential operators).

Angular Momentum - II

- ▶ Note that there is no ambiguity in definitions (1)–(3) because all operators on right-hand sides commute.
- In classical mechanics, magnitude-squared of angular momentum vector given by

$$L^2 = L_x^2 + L_y^2 + L_z^2.$$

Quantum mechanics uses same definition.

▶ Easily demonstrated that L_x , L_y , L_z , and L^2 are Hermitian operators. (Hw. 2, Q. 1.)

Commutation Relations

► Easily shown that (Hw. 2, Q. 2),

$$[L_x, L_y] = i \hbar L_z,$$

$$[L_y, L_z] = i \hbar L_x,$$

$$[L_z, L_x] = i \hbar L_y.$$

► Furthermore (Hw. 2, Q. 3),

$$[L^2, L_x] = [L^2, L_y] = [L^2, L_z] = 0.$$

Above commutation relations imply that, at most, we can simultaneously measure L² and one Cartesian component of L. We shall choose to simultaneously measure L² and L_z.

Ladder Operators

► Helpful to define non-Hermitian ladder operators:

$$L_{\pm} = L_x \pm \mathrm{i}\,L_y.$$

Easily demonstrated that (Hw. 2, Q. 4)

$$[L_+, L_-] = 2 \hbar L_z,$$

 $[L_+, L_z] = -\hbar L_+,$
 $[L_-, L_z] = +\hbar L_-.$

Representation of Angular Momentum - I

▶ Define conventional spherical coordinates, r, θ , ϕ , where

$$x = r \sin \theta \cos \phi,$$

$$y = r \sin \theta \sin \phi,$$

$$z = r \cos \theta.$$

▶ Easily demonstrated that (Hw. 2, Q. 5)

$$L_{x} = -i \hbar \left(-\sin \phi \, \frac{\partial}{\partial \theta} - \cos \phi \, \cot \theta \, \frac{\partial}{\partial \phi} \right), \tag{4}$$

$$L_{y} = -i \hbar \left(\cos \phi \, \frac{\partial}{\partial \theta} - \sin \phi \, \cot \theta \, \frac{\partial}{\partial \phi} \right), \tag{5}$$

$$L_z = -i \, \hbar \, \frac{\partial}{\partial \phi},\tag{6}$$

$$L^{2} = -\hbar^{2} \left[\frac{1}{\sin \theta} \frac{\partial}{\partial \theta} \left(\sin \theta \frac{\partial}{\partial \theta} \right) + \frac{1}{\sin^{2} \theta} \frac{\partial^{2}}{\partial \phi^{2}} \right]. \tag{7}$$

Representation of Angular Momentum - II

Follows that

$$L_{\pm} = \hbar e^{\pm i\phi} \left(\pm \frac{\partial}{\partial \theta} + i \cot \theta \frac{\partial}{\partial \phi} \right). \tag{8}$$

Note that all angular momentum operators are functions of angular coordinates, θ and ϕ , but are completely independent of radial coordinate, r

Eigenstates of Angular Momentum - I

- Search for properly normalized simultaneous eigenstates of L^2 and L_z corresponding to eigenvalues $I(I+1)\hbar^2$ and $m\hbar$, respectively.
- ▶ m and l are dimensionless, because \hbar has dimensions of angular momentum.
- ▶ m and l(l+1) are real, because L^2 and L_z are Hermitian operators.
- ► So, we have

$$L^{2} \psi_{l,m} = I(I+1) \hbar^{2} \psi_{l,m}, \qquad (9)$$

$$L_z \psi_{l,m} = m \, \hbar \, \psi_{l,m}, \tag{10}$$

$$\int \psi_{l,m}^* \, \psi_{l,m} \, d^3 \mathbf{x} = 1. \tag{11}$$

Eigenstates of Angular Momentum - II

Try separable solution

$$\psi_{l,m}(\mathbf{x}) = R_{l,m}(r)\,\Theta_{l,m}(\theta)\,\Phi_{l,m}(\phi). \tag{12}$$

► Given that $d^3\mathbf{x} = r^2 \sin\theta \, dr \, d\theta \, d\phi$, (11) implies that

$$\int_0^\infty R_{l,m}^*(r) R_{l,m}(r) r^2 dr = 1, \tag{13}$$

$$\int_0^{\pi} \Theta_{l,m}^*(\theta) \, \Theta_{l,m}(\theta) \sin \theta \, d\theta = 1, \tag{14}$$

$$\oint \Phi_{l,m}^*(\phi) \Phi_{l,m}(\phi) d\phi = 1.$$
(15)

Eigenstates of Angular Momentum - III

▶ (6), (10), and (12) yield

$$L_{z} \psi_{l,m} = -i \hbar \frac{\partial}{\partial \phi} \left[R_{l,m}(r) \Theta_{l,m}(\theta) \Phi_{l,m}(\phi) \right]$$
$$= R_{l,m}(r) \Theta_{l,m}(\theta) \left(-i \hbar \frac{d\Phi_{l,m}}{d\phi} \right)$$
$$= m \hbar R_{l,m}(r) \Theta_{l,m}(\theta) \Phi_{l,m}(\phi),$$

which implies that

$$-\mathrm{i}\,\frac{d\Phi_{l,m}}{d\phi}=m\,\Phi_{l,m}.$$

Eigenstates of Angular Momentum - IV

▶ Solution of previous equation, subject to normalization condition (15), is

$$\Phi_m(\phi) = \frac{\mathrm{e}^{\mathrm{i}\,m\phi}}{\sqrt{2\pi}}.\tag{16}$$

- ▶ Have, dropped / subscript because Φ_m obviously does not depends on /.
- Now, $\Phi_m(\phi)$ must be a single-valued function of ϕ , otherwise wavefunction would be multi-valued, which makes no physical sense. Hence, we deduce that m is an integer.
- **Easily** seen that the Φ_m satisfy orthonormality constraint

$$\oint \Phi_m^*(\phi) \, \Phi_{m'}(\phi) \, d\phi = \delta_{m,m'}. \tag{17}$$

Eigenstates of Angular Momentum - V

▶ According to (7), (9), (12), and (16),

$$L^{2} \psi_{l,m} = -\hbar^{2} \left[\frac{1}{\sin \theta} \frac{\partial}{\partial \theta} \left(\sin \theta \frac{\partial}{\partial \theta} \right) - \frac{m^{2}}{\sin^{2} \theta} \right] R_{l,m}(r) \Theta_{l,m}(\theta) \Phi_{m}(\phi)$$

$$= I (I+1) \hbar^{2} R_{l,m}(r) \Theta_{l,m}(\theta) \Phi_{m}(\phi).$$

► Hence, we deduce that

$$\frac{1}{\sin \theta} \frac{d}{d\theta} \left(\sin \theta \frac{d\Theta_{l,m}}{d\theta} \right) + \left[I(I+1) - \frac{m^2}{\sin^2 \theta} \right] \Theta_{l,m} = 0.$$

Eigenstates of Angular Momentum - VI

▶ Let $\mu = \cos \theta$. Previous equation becomes

$$\frac{d}{d\mu}\left[\left(1-\mu^2\right)\frac{d\Theta_{l,m}}{d\mu}\right]+\left[l\left(l+1\right)-\frac{m^2}{1-\mu^2}\right]\Theta_{l,m}=0.$$

- Previous equation known as associated Legendre equation. Equation singular at $\mu=\pm 1$ (i.e., $\theta=0,\pi$) where spherical coordinate system becomes singular.
- Solutions that are well-behaved at $\mu=\pm 1$ are known as associated Legendre functions, denoted $P_l^m(\mu)$.
- Such solutions can only be found when

$$l = 0, 1, 2, 3, \cdots,$$

 $-l < m < l.$

Eigenstates of Angular Momentum - VII

Associated Legendre functions take form

$$P_l^m(\mu) = \frac{(-1)^{l+m}}{2^l \, l!} (1 - \mu^2)^{m/2} \, \frac{d^{l+m}}{d\mu^{l+m}} (1 - \mu^2)^l,$$

for $m \geq 0$.

- ► Can see why m cannot exceed l. $(1 \mu^2)^l$ is polynomial of degree 2 l. Polynomial annihilated if differentiated w.r.t. μ more than 2 l times.
- Have

$$P_{l}^{-m} = (-1)^{m} \frac{(l-m)!}{(l+m)!} P_{l}^{m}.$$
 (18)

Eigenstates of Angular Momentum - VIII

Associated Legendre functions satisfy

$$\int_{-1}^{1} P_{l}^{m} P_{l'}^{m} d\mu = \frac{2(l+m)!}{(2l+1)(l-m)!} \delta_{l,l'}.$$
 (19)

▶ Clear that $\Theta_{l,m}(\theta) \propto P_l^m(\cos \theta)$. In fact, (14) and (19) imply that

$$\Theta_{l,m}(\theta) = \left[\frac{2l+1}{2} \frac{(l-m)!}{(l+m)!} \right]^{1/2} P_l^m(\cos \theta), \qquad (20)$$

for m > 0.

▶ Follows from (18) and (20) that

$$\Theta_{l,-m} = (-1)^m \Theta_{l,m}. \tag{21}$$

Eigenstates of Angular Momentum - IX

Finally, (19) and (20) imply that

$$\int_0^{\pi} \Theta_{l,m}^*(\theta) \, \Theta_{l',m}(\theta) \sin \theta \, d\theta = \delta_{l,l'}. \tag{22}$$

Eigenstates of Angular Momentum - X

- ► Conclude that simultaneous eigenstates of L^2 and L_z , corresponding to eigenvalues $I(I+1)\hbar^2$ and $m\hbar$, are such that I is nonnegative integer, and m is integer lying in range $-I \le m \le I$.
- Moreover,

$$\psi_{l,m}(\mathbf{x}) = R_{l,m}(r) Y_l^m(\theta,\phi),$$

where $R_{l,m}(r)$ is undetermined, and the

$$Y_{l}^{m}(\theta,\phi) = \Theta_{l,m}(\theta) \Phi_{m}(\phi)$$

$$= \left[\frac{2l+1}{4\pi} \frac{(l-m)!}{(l+m)!} \right]^{1/2} P_{l}^{m}(\cos\theta) e^{im\phi} \qquad (23)$$

are termed spherical harmonics.

Eigenstates of Angular Momentum - XI

▶ Follows from (16) and (21) that

$$Y_I^{m*} = (-1)^m Y_I^{-m}$$

▶ Follows from (17) and (22) that

$$\oint Y_l^{m*} Y_{l'}^{m'} d\Omega = \delta_{l,l'} \delta_{m,m'},$$

where $d\Omega = \sin\theta \ d\theta \ d\phi$ is an element of solid angle, and integral is over all solid angle.

Note that the $Y_l^m(\theta, \phi)$ form a complete set. In other words, any single-valued, well-behaved function of θ and ϕ can be represented as a linear superposition of the $Y_l^m(\theta, \phi)$.

Raising and Lowering Operators

▶ The $P_l^m(\mu)$ have the following property

$$\frac{dP_{l}^{m}}{d\mu} = -\frac{1}{\sqrt{1-\mu^{2}}} P_{l}^{m+1} - \frac{m\mu}{1-\mu^{2}} P_{l}^{m}$$

$$= \frac{(l+m)(l-m+1)}{\sqrt{1-\mu^{2}}} P_{l}^{m-1} + \frac{m\mu}{1-\mu^{2}} P_{l}^{m}.$$

▶ Follows from (8) and (23) that (Hw. 2, Q. 6)

$$L_{+} Y_{l}^{m} = [l(l+1) - m(m+1)]^{1/2} \hbar Y_{l}^{m+1},$$

$$L_{-} Y_{l}^{m} = [l(l+1) - m(m-1)]^{1/2} \hbar Y_{l}^{m-1}.$$

► L₊ and L₋ are termed raising and lowering operators, respectively, because they, respectively, raise and lower value of quantum number m by unity.

I = 0 Spherical Harmonics

$$Y_0^0(\theta,\phi) = \frac{1}{\sqrt{4\pi}}.$$

I = 1 Spherical Harmonics

$$Y_1^{\pm 1}(\theta,\phi) = \mp \sqrt{\frac{3}{8\pi}} \sin\theta \,\mathrm{e}^{\pm\mathrm{i}\phi}.$$

$$Y_1^0(\theta,\phi) = \sqrt{\frac{3}{4\pi}} \cos \theta.$$

I = 1 Spherical Harmonics

I = 2 Spherical Harmonics

$$Y_2^{\pm 2}(\theta, \phi) = \sqrt{\frac{15}{32\pi}} \sin^2 \theta \, e^{\pm 2 \, i \, \phi}.$$

$$Y_2^{\pm 1}(\theta,\phi) = \mp \sqrt{\frac{15}{8\pi}} \sin\theta \cos\theta e^{\pm i\phi}.$$

$$Y_2^0(\theta,\phi) = \sqrt{\frac{5}{16\pi}} (3\cos^2\theta - 1).$$

I = 2 Spherical Harmonics

I = 3 Spherical Harmonics

$$Y_3^{\pm 3}(\theta,\phi) = \pm \sqrt{\frac{35}{64\pi}} \sin^3 \theta \, e^{\pm 3 \, \mathrm{i} \, \phi}.$$

$$Y_3^{\pm 2}(\theta, \phi) = \sqrt{\frac{105}{32\pi}} \sin^2 \theta \cos \theta e^{\pm 2i\phi}.$$

$$Y_3^{\pm 1}(\theta,\phi) = \pm \sqrt{\frac{21}{64\pi}} \sin\theta (5\cos^2\theta - 1) e^{\pm i\phi}.$$

$$Y_3^0(\theta,\phi) = \sqrt{\frac{7}{16\pi}} \cos\theta \, (5 \cos^2\theta - 3).$$

I = 3 Spherical Harmonics

Magnetic Moment

- ▶ Consider electron of charge -e and mass m_e .
- ▶ Magnetic moment of electron, due to its motion in space, is

$$\boldsymbol{\mu} = -\frac{e}{2 \, m_e} \, \mathbf{x} \times \mathbf{p}.$$

Follows that

$$\mu = -\frac{e}{2 m_e} L.$$

- Conclude that electron that possesses orbital angular momentum also possesses magnetic moment.
- ▶ Magnetic moments have physical consequences. Energy of magnetic moment in magnetic field \mathbf{B} is $E = -\mu \cdot \mathbf{B}$. Force acting on magnetic moment in inhomogeneous magnetic field is $\mathbf{F} = \mu \cdot \nabla B$.