02 - Orbital Angular Momentum

» Aim of Section:

» Brief review of material on orbital angular momentum
presented in previous course (PHY 373).



Angular Momentum - |

In classical mechanics, orbital angular momentum, L, of point
particle of position vector, x, and linear momentum, p, is

L=xxp.
Follows that
Lx:ypz_zpy7 (1)
L, = zpx — xpz, (2)
L,=XPp, —y P (3)

In quantum mechanics, we represent three Cartesian
components of L by quantum mechanical versions of above
three expressions (in which components of x are represented
as algebraic operators, and components of p are represented
as differential operators).



Angular Momentum - Il

Note that there is no ambiguity in definitions (1)—(3) because
all operators on right-hand sides commute.

In classical mechanics, magnitude-squared of angular
momentum vector given by

[>=12+ 15+ L2

Quantum mechanics uses same definition.

Easily demonstrated that L., L,, L., and L2 are Hermitian
operators. (Hw. 2, Q. 1.)



Commutation Relations

» Easily shown that (Hw. 2, Q. 2),
[Ly, Ly] =ihl,,
Ly, L] =ihLy,
(Lo, L] =ihL,.
» Furthermore (Hw. 2, Q. 3),
[L2, L] =[L%L,]=[L?L]=0.

» Above commutation relations imply that, at most, we can
simultaneously measure L? and one Cartesian component of
L. We shall choose to simultaneously measure L% and L,.



Ladder Operators

» Helpful to define non-Hermitian ladder operators:
Ly =L +ilL,.
» Easily demonstrated that (Hw. 2, Q. 4)

Ly, L ]=2hL,,
[L"r?LZ]: _hL-i-a
(L, L]=+hL_.



Representation of Angular Momentum - |

» Define conventional spherical coordinates, r, 8, ¢, where

X = r sinf cos ¢,
y=rsinf sin ¢,

zZ=r cosf.

» Easily demonstrated that (Hw. 2, Q. 5)

Ly= —ih(—sinqﬁ% — Cos ¢ cot¢92>,

¢
. 0 . 0
L,= —1h<cos¢% —S|n¢cot¢98—¢>,
., 0
LZ —lha—gb,

o0 o[ L O (. 0\ 1 0%
Li=—h [sin@@@ Sm08¢9 +sin298¢2'



Representation of Angular Momentum - [l

» Follows that

; 0 0
Ly =het ™ [+ +icotd— ). 8
£=he < a6 " 8gb) ®)
» Note that all angular momentum operators are functions of
angular coordinates, 6 and ¢, but are completely independent
of radial coordinate, r



Eigenstates of Angular Momentum - |

Search for properly normalized simultaneous eigenstates of L2
and L, corresponding to eigenvalues / (/ + 1) h? and mh,
respectively.

m and | are dimensionless, because % has dimensions of
angular momentum.

m and / (/ + 1) are real, because L2 and L, are Hermitian
operators.

So, we have

L2y m= 11+ 1) B2y m, (9)
L, wl,m: mhwl,m’ (10)

/ U U1,m dox = 1. (11)



Eigenstates of Angular Momentum - ||

> Try separable solution

¢I,m(x) = Rl,m(r) @/,m(e) le,m(¢)'

> Given that d°x = r? sin 0 dr df d¢, (11) implies that
/ Ry (1) Rim(r) r? dr =1,
0
/ O m(0) O m(0) sinfdo =1,
0

010 1() d9=1.



Eigenstates of Angular Momentum - IlI

» (6), (10), and (12) yield

Lz ¢l,m lh_ [RI m( )@I,m(e) @/,m(qb)]

= Rim(r )@/m(9)< dffs;bm>

= MA R (1) O1.m(0) D1 m(),

which implies that




Eigenstates of Angular Momentum - IV

Solution of previous equation, subject to normalization
condition (15), is
Bp() e (16)
" - Vor
Have, dropped / subscript because &, obviously does not
depends on /.

Now, ®@,(¢) must be a single-valued function of ¢, otherwise
wavefunction would be multi-valued, which makes no physical
sense. Hence, we deduce that m is an integer.

Easily seen that the @, satisfy orthonormality constraint

§ 1(0) By (6) 6 = G (17)



Eigenstates of Angular Momentum - V

» According to (7), (9), (12), and (16),

0 0 §
=12 [ 2 (00 57 ) = L] Rinl)€10(0) 20

( )h2 Rl,m(r) 9/,m(a) @m((b)'

» Hence, we deduce that

1 d /. dO, m?
2 ’ I+1) -1 —0.
sinf do <S'”9 T >+ [ (I+1) sin29} Otm =0




Eigenstates of Angular Momentum - VI

Let ;4 = cos 6. Previous equation becomes

d do m?
— (1 — %) —=m 1(l+1) - —— =0.
2la- 22 i+ - e =0

Previous equation known as associated Legendre equation.
Equation singular at © = +1 (i.e., # = 0, 7) where spherical
coordinate system becomes singular.

Solutions that are well-behaved at ;x = £1 are known as
associated Legendre functions, denoted P/"(1).

Such solutions can only be found when

l:0717273>""
—I<m</|.



Eigenstates of Angular Momentum - VII

» Associated Legendre functions take form

(_l)l—i-m d/+m

m _ ~.2\ym/2 AV

for m > 0.

» Can see why m cannot exceed /. (1 — u?)" is polynomial of
degree 2 /. Polynomial annihilated if differentiated w.r.t. i
more than 2/ times.

» Have

U=m! om (18)

Pl_m:(_]‘)m (/+m)| /



Eigenstates of Angular Momentum - VIII

» Associated Legendre functions satisfy

v 2 (1 + m)!

» Clear that O ,(6) < P/"(cos#). In fact, (14) and (19) imply
that
2041 (I — m)!
m(0) = | ——
O1m(?) [ 2 (I+m)
for m > 0.
» Follows from (18) and (20) that

1/2
} P/™(cos ), (20)

O1m=(~1)" O m. (21)



Eigenstates of Angular Momentum - IX

» Finally, (19) and (20) imply that

/ 67 m(6) O m(0) sin6.d6 = 5. (22)
0



Eigenstates of Angular Momentum - X

» Conclude that simultaneous eigenstates of L% and L,,
corresponding to eigenvalues / (/ + 1) 72 and mh, are such
that / is nonnegative integer, and m is integer lying in range
—I<m</.

» Moreover,
wl,m(x) = Rl,m(r) Y/m(97 ¢)7
where R ,(r) is undetermined, and the
Y70, 9) = O1,m(6) Pm(9)

2041 (1= m)!
_[ 4 (I 4+ m)!

1/2 .
] P(cosf)e'™?  (23)

are termed spherical harmonics.



Eigenstates of Angular Momentum - XI

Follows from (16) and (21) that
Ylm* _ (_1)m Y/_m

Follows from (17) and (22) that
yf YA d2 =81 S

where df2 =sin6 df d¢ is an element of solid angle, and
integral is over all solid angle.

Note that the Y;"(6, ¢) form a complete set. In other words,
any single-valued, well-behaved function of 6 and ¢ can be
represented as a linear superposition of the Y;7(6, ¢).



Raising and Lowering Operators

» The P/"(u) have the following property

dPr _ 1 m+1 mp

dp 12! 1—p2!
:(I—l—m)(/—m—i-l)le_1+ mi pm

V1= p? 1—p2

» Follows from (8) and (23) that (Hw. 2, Q. 6)

LY =[1(+1)—m(m+1)]Y2hymL
LYPr=[(+1)—m(m-1))"2hym 2

» L. and L_ are termed raising and lowering operators,
respectively, because they, respectively, raise and lower value
of quantum number m by unity.



= 0 Spherical Harmonics
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| = 1 Spherical Harmonics



| = 1 Spherical Harmonics
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| = 2 Spherical Harmonics

1 .
Y552(6,¢) = \/375 sin2 9 et219,
7r
+1 15 +ig
Y5 (0,0) =F 8—7Tsm«9 cosfe™'?.
0 /5 2
Y5(0,¢) = Ton (3 cos” 0 —1).



| = 2 Spherical Harmonics
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| = 3 Spherical Harmonics

Y573(0.0) = i,/% sin® 0319,
1 :
Y520, 6) = 32% sin2 6 cosfe?1?,
+1 21 . 2 +ig
Y5 (0,0) =+ %5|n0(5cos 0 —1)er'?.

7
Y2(0,6) = ”E cosf (5 cos® 6§ — 3).



| = 3 Spherical Harmonics
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Magnetic Moment

Consider electron of charge —e and mass me.

Magnetic moment of electron, due to its motion in space, is

= € X X
p=—5 p.

e

Follows that .

H:_2me

Conclude that electron that possesses orbital angular
momentum also possesses magnetic moment.

Magnetic moments have physical consequences. Energy of
magnetic moment in magnetic field B is E = —pu - B. Force
acting on magnetic moment in inhomogeneous magnetic field
isF=p-VB.



