
02 - Orbital Angular Momentum

◮ Aim of Section:
◮ Brief review of material on orbital angular momentum

presented in previous course (PHY 373).



Angular Momentum - I

◮ In classical mechanics, orbital angular momentum, L, of point
particle of position vector, x, and linear momentum, p, is

L = x× p.

◮ Follows that

Lx = y pz − z py , (1)

Ly = z px − x pz , (2)

Lz = x py − y px . (3)

◮ In quantum mechanics, we represent three Cartesian
components of L by quantum mechanical versions of above
three expressions (in which components of x are represented
as algebraic operators, and components of p are represented
as differential operators).



Angular Momentum - II

◮ Note that there is no ambiguity in definitions (1)–(3) because
all operators on right-hand sides commute.

◮ In classical mechanics, magnitude-squared of angular
momentum vector given by

L2 = L2x + L2y + L2z .

Quantum mechanics uses same definition.

◮ Easily demonstrated that Lx , Ly , Lz , and L2 are Hermitian
operators. (Hw. 2, Q. 1.)



Commutation Relations

◮ Easily shown that (Hw. 2, Q. 2),

[Lx , Ly ] = i ~ Lz ,

[Ly , Lz ] = i ~ Lx ,

[Lz , Lx ] = i ~ Ly .

◮ Furthermore (Hw. 2, Q. 3),

[L2, Lx ] = [L2, Ly ] = [L2, Lz ] = 0.

◮ Above commutation relations imply that, at most, we can
simultaneously measure L2 and one Cartesian component of
L. We shall choose to simultaneously measure L2 and Lz .



Ladder Operators

◮ Helpful to define non-Hermitian ladder operators:

L± = Lx ± i Ly .

◮ Easily demonstrated that (Hw. 2, Q. 4)

[L+, L−] = 2~ Lz ,

[L+, Lz ] = −~ L+,

[L−, Lz ] = +~ L−.



Representation of Angular Momentum - I

◮ Define conventional spherical coordinates, r , θ, φ, where

x = r sin θ cosφ,

y = r sin θ sinφ,

z = r cos θ.

◮ Easily demonstrated that (Hw. 2, Q. 5)

Lx = −i ~

(

− sinφ
∂

∂θ
− cosφ cot θ

∂

∂φ

)

, (4)

Ly = −i ~

(

cosφ
∂

∂θ
− sinφ cot θ

∂

∂φ

)

, (5)

Lz = −i ~
∂

∂φ
, (6)

L2 = −~
2

[

1

sin θ

∂

∂θ

(

sin θ
∂

∂θ

)

+
1

sin2 θ

∂ 2

∂φ 2

]

. (7)



Representation of Angular Momentum - II

◮ Follows that

L± = ~ e
± iφ

(

± ∂

∂θ
+ i cot θ

∂

∂φ

)

. (8)

◮ Note that all angular momentum operators are functions of
angular coordinates, θ and φ, but are completely independent
of radial coordinate, r



Eigenstates of Angular Momentum - I

◮ Search for properly normalized simultaneous eigenstates of L2

and Lz corresponding to eigenvalues l (l + 1)~2 and m ~,
respectively.

◮ m and l are dimensionless, because ~ has dimensions of
angular momentum.

◮ m and l (l + 1) are real, because L2 and Lz are Hermitian
operators.

◮ So, we have

L2 ψl ,m = l (l + 1)~2 ψl ,m, (9)

Lz ψl ,m = m ~ψl ,m, (10)
∫

ψ∗

l ,m ψl ,m d3x= 1. (11)



Eigenstates of Angular Momentum - II

◮ Try separable solution

ψl ,m(x) = Rl ,m(r)Θl ,m(θ)Φl ,m(φ). (12)

◮ Given that d3x = r2 sin θ dr dθ dφ, (11) implies that

∫

∞

0

R∗

l ,m(r)Rl ,m(r) r
2 dr = 1, (13)

∫ π

0

Θ∗

l ,m(θ)Θl ,m(θ) sin θ dθ= 1, (14)

∮

Φ∗

l ,m(φ)Φl ,m(φ) dφ= 1. (15)



Eigenstates of Angular Momentum - III

◮ (6), (10), and (12) yield

Lz ψl ,m = −i ~
∂

∂φ
[Rl ,m(r)Θl ,m(θ)Φl ,m(φ)]

= Rl ,m(r)Θl ,m(θ)

(

−i ~
dΦl ,m

dφ

)

= m ~Rl ,m(r)Θl ,m(θ)Φl ,m(φ),

which implies that

−i
dΦl ,m

dφ
= mΦl ,m.



Eigenstates of Angular Momentum - IV

◮ Solution of previous equation, subject to normalization
condition (15), is

Φm(φ) =
e
im φ

√
2π

. (16)

◮ Have, dropped l subscript because Φm obviously does not
depends on l .

◮ Now, Φm(φ) must be a single-valued function of φ, otherwise
wavefunction would be multi-valued, which makes no physical
sense. Hence, we deduce that m is an integer.

◮ Easily seen that the Φm satisfy orthonormality constraint

∮

Φ∗

m(φ)Φm′(φ) dφ = δm,m′ . (17)



Eigenstates of Angular Momentum - V

◮ According to (7), (9), (12), and (16),

L2 ψl,m = −~
2

[

1

sin θ

∂

∂θ

(

sin θ
∂

∂θ

)

− m 2

sin2 θ

]

Rl,m(r)Θl,m(θ)Φm(φ)

= l (l + 1) ~2 Rl,m(r)Θl,m(θ)Φm(φ).

◮ Hence, we deduce that

1

sin θ

d

dθ

(

sin θ
dΘl ,m

dθ

)

+

[

l (l + 1)− m 2

sin2 θ

]

Θl ,m = 0.



Eigenstates of Angular Momentum - VI

◮ Let µ = cos θ. Previous equation becomes

d

dµ

[

(1− µ2)
dΘl ,m

dµ

]

+

[

l (l + 1)− m 2

1− µ2

]

Θl ,m = 0.

◮ Previous equation known as associated Legendre equation.
Equation singular at µ = ±1 (i.e., θ = 0, π) where spherical
coordinate system becomes singular.

◮ Solutions that are well-behaved at µ = ±1 are known as
associated Legendre functions, denoted Pm

l (µ).

◮ Such solutions can only be found when

l = 0, 1, 2, 3, · · ·,

−l ≤ m ≤ l .



Eigenstates of Angular Momentum - VII

◮ Associated Legendre functions take form

Pm
l (µ) =

(−1)l+m

2l l !
(1− µ2)m/2 d l+m

dµl+m
(1− µ2)l ,

for m ≥ 0.

◮ Can see why m cannot exceed l . (1− µ2)l is polynomial of
degree 2 l . Polynomial annihilated if differentiated w.r.t. µ
more than 2 l times.

◮ Have

P−m
l = (−1)m

(l −m)!

(l +m)!
Pm
l . (18)



Eigenstates of Angular Momentum - VIII

◮ Associated Legendre functions satisfy

∫

1

−1

Pm
l Pm

l ′ dµ =
2 (l +m)!

(2l + 1) (l −m)!
δl ,l ′ . (19)

◮ Clear that Θl ,m(θ) ∝ Pm
l (cos θ). In fact, (14) and (19) imply

that

Θl ,m(θ) =

[

2l + 1

2

(l −m)!

(l +m)!

]1/2

Pm
l (cos θ), (20)

for m ≥ 0.

◮ Follows from (18) and (20) that

Θl ,−m = (−1)m Θl ,m. (21)



Eigenstates of Angular Momentum - IX

◮ Finally, (19) and (20) imply that

∫ π

0

Θ∗

l ,m(θ)Θl ′,m(θ) sin θ dθ = δl ,l ′ . (22)



Eigenstates of Angular Momentum - X

◮ Conclude that simultaneous eigenstates of L2 and Lz ,
corresponding to eigenvalues l (l + 1)~2 and m ~, are such
that l is nonnegative integer, and m is integer lying in range
−l ≤ m ≤ l .

◮ Moreover,
ψl ,m(x) = Rl ,m(r)Y

m
l (θ, φ),

where Rl ,m(r) is undetermined, and the

Ym
l (θ, φ)= Θl ,m(θ)Φm(φ)

=

[

2l + 1

4π

(l −m)!

(l +m)!

]1/2

Pm
l (cos θ) e im φ (23)

are termed spherical harmonics.



Eigenstates of Angular Momentum - XI

◮ Follows from (16) and (21) that

Ym ∗

l = (−1)m Y−m
l

◮ Follows from (17) and (22) that

∮

Ym ∗

l Ym′

l ′ dΩ = δl ,l ′ δm,m′ ,

where dΩ = sin θ dθ dφ is an element of solid angle, and
integral is over all solid angle.

◮ Note that the Ym
l (θ, φ) form a complete set. In other words,

any single-valued, well-behaved function of θ and φ can be
represented as a linear superposition of the Ym

l (θ, φ).



Raising and Lowering Operators

◮ The Pm
l (µ) have the following property

dPm
l

dµ
= − 1

√

1− µ2
Pm+1

l
− m µ

1− µ2
Pm
l

=
(l +m) (l −m + 1)

√

1− µ2
Pm−1

l
+

m µ

1− µ2
Pm
l .

◮ Follows from (8) and (23) that (Hw. 2, Q. 6)

L+ Ym
l = [l (l + 1)−m (m + 1)]1/2 ~Ym+1

l ,

L− Ym
l = [l (l + 1)−m (m − 1)]1/2 ~Ym−1

l .

◮ L+ and L− are termed raising and lowering operators,
respectively, because they, respectively, raise and lower value
of quantum number m by unity.



l = 0 Spherical Harmonics

◮

Y 0
0 (θ, φ) =

1√
4π
.
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l = 1 Spherical Harmonics

◮

Y±1

1
(θ, φ) = ∓

√

3

8π
sin θ e±iφ.

◮

Y 0
1 (θ, φ) =

√

3

4π
cos θ.



l = 1 Spherical Harmonics
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l = 2 Spherical Harmonics

◮

Y±2

2
(θ, φ) =

√

15

32π
sin2 θ e±2 iφ.

◮

Y±1

2
(θ, φ) = ∓

√

15

8π
sin θ cos θ e±iφ.

◮

Y 0
2 (θ, φ) =

√

5

16π
(3 cos2 θ − 1).



l = 2 Spherical Harmonics
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l = 3 Spherical Harmonics

◮

Y±3

3
(θ, φ) = ±

√

35

64π
sin3 θ e±3 iφ.

◮

Y±2

3
(θ, φ) =

√

105

32π
sin2 θ cos θ e±2 iφ.

◮

Y±1

3
(θ, φ) = ±

√

21

64π
sin θ (5 cos2 θ − 1) e±iφ.

◮

Y 0
3 (θ, φ) =

√

7

16π
cos θ (5 cos2 θ − 3).



l = 3 Spherical Harmonics

−0.20 −0.15 −0.10 −0.05 0.00 0.05 0.10 0.15 0.20
x

−0.20

−0.15

−0.10

−0.05

0.00

0.05

0.10

0.15

0.20

z

|Y3
3|2

−0.15 −0.10 −0.05 0.00 0.05 0.10 0.15
x

−0.15

−0.10

−0.05

0.00

0.05

0.10

0.15

z

|Y2
3|2

−0.20 −0.15 −0.10 −0.05 0.00 0.05 0.10 0.15 0.20
x

−0.20

−0.15

−0.10

−0.05

0.00

0.05

0.10

0.15

0.20

z

|Y1
3|2

−0.6 −0.4 −0.2 0.0 0.2 0.4 0.6
x

−0.6

−0.4

−0.2

0.0

0.2

0.4

0.6

z

|Y0
3|2



Magnetic Moment

◮ Consider electron of charge −e and mass me .

◮ Magnetic moment of electron, due to its motion in space, is

µ = − e

2me

x× p.

◮ Follows that
µ = − e

2me

L.

◮ Conclude that electron that possesses orbital angular
momentum also possesses magnetic moment.

◮ Magnetic moments have physical consequences. Energy of
magnetic moment in magnetic field B is E = −µ ·B. Force
acting on magnetic moment in inhomogeneous magnetic field
is F = µ · ∇B .


