
01 - Review of Quantum Mechanics

◮ Aim of Section:
◮ Brief reminder of principles of quantum mechanics presented in

previous course (PHY 373).



Wavefunction

◮ In quantum mechanics, instantaneous state of single point
particle (e.g., electron) moving in three dimensions specified
by wavefunction:

ψ(x, t).

◮ Wavefunction is complex function of position, x, and time, t.

◮ Interpretation of wavefunction is that probability of
measurement of particle’s position at time t finding that
particle lies in small volume d3x, centered at position vector
x, is proportional to

|ψ(x, t)|2 d3
x.



Normalization of Wavefunction - I

◮ By analogy, probability of particle being found anywhere in
space is

∫

|ψ(x, t)|2 d3
x,

where integral is over all space.

◮ However, particle is bound to be found somewhere in space,
so previous probability should be unity.

◮ Consequently, a properly normalized wavefunction satisfies
normalization condition:

∫

|ψ(x, t)|2 d3
x = 1.

◮ From now on, all wavefunctions are assumed to be properly
normalized, unless stated otherwise.



Normalization of Wavefunction - II

◮ For properly normalized wavefunction, probability of
measurement of particle’s position at time t finding that
particle lies in small volume d3x, centered at position vector
x, is equal to

|ψ(x, t)|2 d3
x.



Operators

◮ In quantum mechanics, dynamical variables (e.g., position,
momentum, angular momentum, energy) are represented by
complex algebraic/differential operators that act on
wavefunction.

◮ Incidentally, an operator is merely something that acts on a
wavefunction, and thereby converts it into a different (in
general) wavefunction.

◮ For example, three Cartesian components of a point particle’s
position are represented by real algebraic operators, x , y , and
z .



Expectation Value

◮ Suppose we make large number of independent measurements
of x-component of particle’s position, and average results.

◮ From probabilistic interpretation of wavefunction, and fact
that x-component of position represented by algebraic
operator x , average value of measurements, which is known as
expectation value, given by

〈x〉 =

∫

x |ψ(x, t)|2 d3
x ≡

∫

ψ∗(x, t) x ψ(x, t) d3
x.

◮ By analogy, if a general dynamical variable is represented by
operator A then expectation value of A is

〈A〉 =

∫

ψ∗(x, t)Aψ(x, t) d3
x. (1)



Variance and Standard Deviation

◮ In general, each measurement of variable corresponding to A

will yield a different result. Mean value of measurements is
〈A〉.

◮ Scatter about mean value characterized by variance:

σ2A= 〈(A− 〈A〉)2〉 = 〈(A 2 − 2A 〈A〉+ 〈A〉2〉

= 〈A 2〉 − 〈A〉2. (2)

◮ Measurement of variable corresponding to A likely to yield
result in range 〈A〉 ± 3σA (assuming Gaussian distribution),
and very unlikely to yield result outside this range.

◮ σA (which is square root of variance) is termed standard
deviation.



Eigenstates and Eigenvalues - I

◮ An eigenstate of operator A corresponding to eigenvalue a

(where, a is, in general, a complex number) is such that

Aψ = aψ.

◮ Convenient to label eigenstate using corresponding eigenvalue.
So, previous equation becomes

Aψa = aψa.



Eigenstates and Eigenvalues - II

◮ Expectation value of A when ψ = ψa is

〈A〉 =

∫

ψ∗

a Aψa d
3x =

∫

ψ∗

a aψa d
3x = a

∫

ψ∗

a ψa d
3x = a.

◮ Likewise,

〈A 2〉=

∫

ψ∗

a A
2 ψa d

3
x =

∫

ψ∗

a Aaψa d
3
x

=

∫

ψ∗

a a
2 ψa d

3x = a 2

∫

ψ∗

a ψa d
3x = a 2.

◮ Hence,
σ 2

A = 〈A 2〉 − 〈A〉2 = 0.



Eigenstates and Eigenvalues - III

◮ Conclude that if ψ = ψa then measurement of A is bound to
give result a.

◮ In other words, eigenstate of A, corresponding to eigenvalue a,
represents quantum state in which measurement of variable
corresponding to A bound to give result a.



Hermitian Operators - I

◮ Expectation value of measurement of dynamical variable
represented by operator A is

〈A〉 =

∫

ψ∗ Aψ d3
x.

◮ However, if variable is physical quantity (e.g., position,
momentum) then expectation value must be real (no physical
measurement yields a complex result).

◮ Now,

〈A〉∗ =

∫

ψ (Aψ)∗ d3
x.



Hermitian Operators - II

◮ We require
〈A〉∗ = 〈A〉,

which implies that

∫

(Aψ)∗ ψ d3
x =

∫

ψ∗ (Aψ) d3
x (3)

(brackets indicate which wavefunction A acts on).

◮ Any operator that satisfies previous condition is termed
Hermitian.

◮ Conclude that all operators that represent physical (i.e.,
measurable) variables in quantum mechanics must be
Hermitian operators.

◮ Obvious that real algebraic operators (e.g., x) are Hermitian.



Hermitian Operators - III

◮ Possible to prove number of important theorems regarding
Hermitian operators:

1. Eigenvalues of Hermitian operator are all real. (Hw. 1, Q. 1).
2. Eigenstates of Hermitian operator corresponding to different

eigenvalues, a and a′, are mutually orthogonal: i.e.,

∫

ψ∗

a ψa′ d
3x = 0.

(Hw. 1, Q. 2).
3. Eigenstates of Hermitian operator corresponding to same

eigenvalue can be chosen so as to be mutually orthogonal.
(Hw. 1, Q. 3).

4. Eigenstates form a complete set: i.e., a general wavefunction
can be represented as a linear superposition of eigenstates.
(Hard to prove, leave to mathematicians).



Orthonormality Constraint

◮ Assume that eigenstates of A are properly normalized, and
that any eigenstates corresponding to same eigenvalue have
been chosen so as to be mutually orthogonal.

◮ Index different eigenstates by integer i that runs from 1 to ∞.
(There must be an infinite number of eigenstates, otherwise
states could never form a complete set.)

◮ Eigenstates satisfy orthonormality constraint:

∫

ψ∗

i ψj d
3
x = δij .

◮ Previous expression merely states that eigenstates are both
mutually orthogonal and properly normalized.



Expansion of Wavefunction

◮ A general wavefunction can be expressed as a linear
superposition of the ψi :

ψ =
∑

i=1,∞

ci ψi , (4)

where the ci are complex numbers.

◮ Easily demonstrated that (Hw. 1, Q. 4)

ci =

∫

ψ∗

i ψ d3x.

◮ If ψ is properly normalized then (Hw. 1, Q. 5)

∑

i=1,∞

|ci |
2 = 1. (5)



Measurement - I

◮ Easily demonstrated that (Hw. 1, Q. 6)

〈A〉 =
∑

i=1,∞

|ci |
2 ai ,

where ai is eigenvalue corresponding to ith eigenstate.

◮ Interpret previous equation in probabilistic sense. |ci |
2 is

probability that measurement of dynamical variable
corresponding to A yields result ai .

◮ (5) ensures that sum of probabilities is unity (as must be
case).

◮ Can see that eigenvalues of A can be interpreted as various
possible results of measurement of dynamical variable
corresponding to A.



Measurement - II

◮ Can now appreciate why eigenvalues of A must be real.

◮ Immediately after measurement of dynamical variable
corresonding to A yields result ai , system must be in state in
which measurement of variable bound to yield result ai .
(Because second measurement made immediately after first
must give same answer.)

◮ Have seen that such a state is ψi .

◮ Hence, measurement of variable yielding result ai causes
wavefunction (4) to collapse to ψi . In other words, system is
left in state for which |cj |

2 = δij .



Commuting Operators

◮ Let A and B be Hermitian operators.

◮ Suppose that
AB ψ = B Aψ

for all wavefunctions.

◮ Follows that
(AB − B A)ψ = 0.

◮ Can take general wavefunction as read, and write

AB − B A = 0.

◮ Two operators that satisfy previous equation are said to
commute with one another.

◮ Note that complex numbers commute with all operators.



Simultaneous Eigenstates - I

◮ Suppose that A and B are commuting Hermitian operators.

◮ Let ψa be an eigenstate of A corresponding to eigenvalue a.
Follows that

Aψa = aψa.

◮ Now,
B Aψa = B aψa,

or
A (B ψa) = a (B ψa).

◮ We deduce that B ψa is an eigenstate of A corresponding to
eigenvalue a.



Simultaneous Eigenstates - II

◮ Follows that B ψa ∝ ψa. Let constant of proportionality be b.

◮ Hence,
B ψa = b ψa.

◮ Deduce that ψa is eigenstate of B corresponding to eigenvalue
b.

◮ In other words, if A and B are commuting operators then
every eigenstate of A is also an eigenstate of B . That is, A
and B possess simultaneous eigenstates.



Simultaneous Eigenstates - III

◮ A simultaneous eigenstate of A and B corresponding to
eigenvalues a and b is denoted ψa,b, where

Aψa,b= aψa,b,

B ψa,b= b ψa,b,

◮ ψa,b is a state in which a measurement of dynamical variable
corresponding to A is bound to give result a, and a
measurement of dynamical variable corresponding to B is
bound to give result b.

◮ After each measurement, wavefunction remains ψa,b so
measurement of A does not affect value of subsequent
meaurement of B , and vice versa.

◮ Conclude that if A and B commute then corresponding
dynamical variables can be measured ‘simultaneously’.



Simultaneous Eigenstates - IV

◮ Suppose that we wish to uniquely label eigenstates of A by
corresponding eigenvalues. If A possesses degenerate
eigenstates (i.e., eigenstates with same eigenvalue) then this
scheme is frustrated.

◮ However, if B commutes with A then eigenstates of A are also
eigenstates of B . Simultaneous eigenstates of A and B with
same eigenvalue of A do not necessarily have same eigenvalue
of B . Thus, possible to uniquely label simultaneous
eigenstates of A and B via corresponding eigenvalues.

◮ Scheme could only be frustrated if A and B possess doubly
degenerate eigenstates (i.e., different eigenstates that possess
same eigenvalues of both A and B).



Simultaneous Eigenstates - V

◮ In this case, search for third dynamical variable whose
corresponding operator, C , commutes with both A and B .
Hopefully, A, B , and C do not possess triply degenerate
eigenstates.

◮ If they do then search for fourth dynamical variable whose
corresponding operator, D, commutes with both A, B , and C .

◮ Continue this process until obtain complete set of commuting
operators whose simultaneous eigenstates are each labelled by
a unique set of eigenvalues.



Simultaneous Eigenstates - VI

◮ As an example, energy eigenstates of hydrogen atom are
highly degenerate. In fact, ith energy eigenvalue corresponds
to i 2 different eigenstates (neglecting spin).

◮ Clearly, cannot uniquely label energy eigenstates by energy
eigenvalues.

◮ However, operator corresponding to energy, H, commutes
with operators corresponding to square of total angular
momentum, L 2, and projection of angular momentum along
z-axis (say), Lz .

◮ So, H, L 2, and Lz possess simultaneous eigenstates. Each
eigenstate possesses different set of eigenvalues of three
operators. Thus, possible to uniquely label energy eigenstates
of hydrogen atom in terms of eigenvalues of H, L 2, and Lz .



Noncommuting Operators - I

◮ Have seen that if A and B are commuting Hermitian
operators then corresponding dynamical variables can be
simultaneously measured. In other words, quantum state
corresponding to definite result of measurement of first
variable also corresponds to definite result of measurement of
second variable.

◮ Stands to reason that if A and B do not commute then
corresponding variables cannot be simultaneously measured.
That is, quantum state corresponding to definite result of
measurement of first variable corresponds to range of different
results of measurement of second variable.

◮ Let us try to quantify this effect.



Noncommuting Operators - II

◮ A straightforward generalization of (3) yields

∫

(Aψ1)
∗ ψ2 d

3x =

∫

ψ∗

1 (Aψ2) d
3x, (6)

for an Hermitian operator A. Here, ψ1 and ψ2 are general
wavefunctions.

◮ Let f = (A− 〈A〉)ψ, where ψ is a general wavefunction.

◮ Follows that
∫

|f |2 d3x =

∫

f ∗ f d3x =

∫

[(A− 〈A〉)ψ]∗ [(A − 〈A〉)ψ] d3x.

◮ Making use of (1), (2) and (6), we obtain

∫

|f |2 d3x =

∫

ψ∗ (A− 〈A〉)2 ψ d3x = 〈(A− 〈A〉)2〉 = σ 2

A.



Noncommuting Operators - III

◮ Likewise, if g = (B − 〈B〉)ψ then

∫

|g |2 d3
x = σ 2

B .

◮ According to Schwarz inequality,

∣

∣

∣

∣

∫

f ∗ g d3x

∣

∣

∣

∣

2

≤

∫

|f |2 d3x

∫

|g |2 d3x.

◮ If z is a complex number then

|z | 2 = [Re(z)] 2 + [Im(z)] 2 ≥ [Im(z)] 2 =

[

1

2 i
(z − z∗)

]2

.



Noncommuting Operators - IV

◮ If z =
∫

f ∗ g d3x then previous four equations imply that

σ2A σ
2

B ≥

[

1

2 i
(z − z∗)

]2

.

◮ Have

z =

∫

[(A− 〈A〉)ψ]∗ [(B − 〈B〉)ψ] d3
x

=

∫

ψ∗ (A− 〈A〉) (B − 〈B〉)ψ d3x = 〈(A− 〈A〉) (B − 〈B〉)〉,

where use has been made of (1) and (6).

◮ Easily seen that

〈(A− 〈A〉) (B − 〈B〉)〉 = 〈AB〉 − 〈A〉 〈B〉.



Noncommuting Operators - V

◮ Likewise

z∗=

∫

[(B − 〈B〉)ψ]∗ [(A− 〈A〉)ψ] d3x

=

∫

ψ∗ (B − 〈B〉) (A− 〈A〉)ψ d3
x = 〈(B − 〈B〉) (A − 〈A〉)〉.

◮ Easily seen that

〈(B − 〈B〉) (A− 〈A〉)〉 = 〈B A〉 − 〈A〉 〈B〉.

◮ Previous five equations yield

σ2A σ
2

B ≥

(

1

2 i
〈[A,B ]〉

)2

, (7)

where
[A,B ] ≡ AB − B A

is termed commutator of operators A and B .



Heisenberg Uncertainty Principle

◮ Clear from previous equation that if [A,B ] 6= 0 then state in
which measurement of dynamical variable corresponding to A

yields definite result (i.e., σA = 0) corresponds to state in
which measurement of dynamical variable corresponding to B

could yield all possible results (i.e., σB = ∞.)

◮ In other words, exact knowledge of value of dynamical variable
corresponding to A corresponds to complete lack of knowledge
of value of dynamical variable corresponding to B .

◮ This proposition is known as Heisenberg’s uncertainty
principle. It only applies to dynamical variables corresponding
to noncommuting operators.



Position

◮ Three Cartesian components of particle’s position represented
by algrebraic operators x , y , and z .

◮ Algebraic operators commute with one another. In other
words,

x y = y x ,

et ceteta.

◮ Conclude that three Cartesian components of particle’s
position can be simultaneously measured.



Linear Momentum - I

◮ Three Cartesian components of particle’s linear momentum
represented by differential operators

px ≡ −i ~
∂

∂x
,

py ≡ −i ~
∂

∂y
,

pz ≡ −i ~
∂

∂z
,

where ~ is Planck’s constant divided by 2π.

◮ Partial derivatives commute with one another:

∂

∂x

∂

∂y
=

∂

∂y

∂

∂x
,

et cetara.



Linear Momentum - II

◮ Conclude that three Cartesian components of particle’s linear
momentum can be simultaneously measured.



Position and Linear Momentum - I

◮ Operators representing x-components of position and
momentum do not commute: in fact (Hw. 1, Q. 7)

[x , px ] = i ~.

◮ Follows from (7) that

σx σpx ≥ ~.

This is original form of Heisenberg uncertainty principle. (It
was subsequently generalized to all noncommuting operators.)

◮ Previous equation states that is impossible to simultaneously
measure x-components of particle’s position and linear
momentum. Exact knowledge of value of one implies
complete uncertainty in value of other.



Position and Linear Momentum - II

◮ Let x1 ≡ x , x2 ≡ y , et cetera, and let p1 ≡ px , et cetera.

◮ It is easily seen that the xi and the pi satisfy commutation
relations

[xi , xj ] = 0, (8)

[pi , pj ] = 0, (9)

[xi , pj ] = i ~ δij . (10)

◮ Clear that we can only exactly measure one of each xi , pi pair.
In other words, we can simultaneously measure (x1, x2, x3),
(p1, x2, x3), (x1, p2, x3), · · · , (p1, p2, p3).



Schrödinger’s Equation - I

◮ When system is not being observed, its wavefunction evolves
in time according to Schrödinger’s equation:

i ~
∂ψ

∂t
= H ψ, (11)

where H is an Hermitian operator, known as Hamiltonian,
that represents energy of system.



Schrödinger’s Equation - II

◮ Schrödinger’s equation must conserve
∫

|ψ|2 d3x, otherwise
properly normalized wavefunction would not remain properly
normalized as it evolves in time, which would not make any
sense.

◮ Multiplying (11) by ψ∗, we obtain

i ~
∂ψ

∂t
ψ∗ = ψ∗ H ψ.

◮ Multiplying complex conjugate of (11) by ψ, we obtain

i ~
∂ψ∗

∂t
ψ = −(H ψ)∗ ψ.



Schrödinger’s Equation - III

◮ Adding previous two equations yields

i ~
∂|ψ|2

∂t
= ψ∗ H ψ − (H ψ)∗ ψ.

◮ Integration over all space gives

i ~
d

dt

∫

|ψ|2 d3x =

∫

ψ∗ H ψ d3x−

∫

(H ψ)∗ ψ d3x.

◮ However, because H is an Hermitian operator

∫

(H ψ)∗ ψ d3x =

∫

ψ∗ H ψ d3x.



Schrödinger’s Equation - IV

◮ Hence, we deduce that

d

dt

∫

|ψ|2 d3x = 0.

◮ In other words, if
∫

|ψ|2 d3
x = 1

at time t = 0 then
∫

|ψ|2 d3x = 1 at all subsequent times, as
wavefunction evolves according to Schrödinger’s equation.

◮ This important conservation law is guaranteed as long as
Hamiltonian is Hermitian (which is another way of saying that
Hamiltonian has to be Hermitian).



Time Evolution - I

◮ Consider dynamical variable represented by Hermitian
operator A.

◮ Expectation value of measurement of variable is

〈A〉 =

∫

ψ∗ Aψ d3
x.

◮ Follows that

d〈A〉

dt
=

∫

∂ψ∗

∂t
Aψ d3

x+

∫

ψ∗ A
∂ψ

∂t
d3

x.

◮ Here, we are assuming that A does not depend explicitly on
time. (This is certainly case for operators that represent
position and momentum.)



Time Evolution - II

◮ Making use of (11), we obtain

d〈A〉

dt
= −

1

i ~

∫

(H ψ)∗ Aψ d3x+
1

i ~

∫

ψ A (H ψ) d3x

= −
1

i ~

∫

ψ∗ H Aψ d3
x+

1

i ~

∫

ψAH ψ d3
x,

where use has been made of fact that H is Hermitian.

◮ Follows that
d〈A〉

dt
=

1

i ~
〈[A,H]〉. (12)

◮ Conclude that dynamical variables whose corresponding
operators commute with Hamiltonian have expectation values
that are constant in time.



Ehrenfest Theorem - I

◮ By analogy with classical physics, Hamiltonian of point
particle of mass m moving in potential V (x) is

H =
∑

i=1,3

p 2

i

2m
+ V (x).

◮ According to (12),

d〈xi 〉

dt
=

1

i h
〈[xi ,H]〉 =

1

i ~ 2m
〈
[

xi , p
2

i

]

〉,

d〈pi 〉

dt
=

1

i h
〈[pi ,H]〉 =

1

i ~
〈[pi ,V (x)]〉,

where use has been made of (8)–(10).



Ehrenfest Theorem - II

◮ However (Hw. 1, Q. 8),

[

xi , p
2

i

]

= 2 i ~ pi ,

[pi ,V (x)] = −i ~
∂V

∂xi
.

◮ Hence, we obtain Ehrenfest’s theorem:

d〈xi〉

dt
=

〈pi〉

m
,

d〈pi〉

dt
= −

〈

∂V

∂xi

〉

.



Ehrenfest Theorem - III

◮ According to Ehrefest’s theorem, expectation values of xi and
pi evolve in time in analogous fashion to that predicted by
classical physics.

◮ Ehrenfest’s theorem ensures that quantum mechanics is
consistent with classical mechanics. This is important,
because we know that classical physics is valid on large
lengthscales.

◮ Clear that classical limit corresponds to case in which we can
replace 〈xi 〉 by xi , et cetera. This is possible on lengthscales
much larger than de Broglie wavelength.



Stationary States - I

◮ Consider eigenstate of Hamiltonian corresponding to
eigenvalue E :

H ψE = E ψE .

◮ This state corresponds to quantum state of definite energy E .

◮ According to (11),

i ~
∂ψE

∂t
= H ψE = E ψE . (13)

◮ Let us write ψE in separable form

ψE (x, t) = F (t)ΨE (x).



Stationary States - II

◮ (13) yields

i ~
dF

dt
ΨE (x) = E F (t)ΨE (x).

◮ Follows that

i ~
dF

dt
= E F ,

which gives

F (t) = a exp

(

−iE t

~

)

,

where a is arbitrary constant.



Stationary States - III

◮ Conclude that properly normalized eigenstate of Hamiltonian
corresponding to eigenvalue E can be written

ψE (x, t) = ΨE (x) exp

(

−iE t

~

)

, (14)

where
∫

Ψ∗

E ΨE d3
x = 1,

and
H ΨE = E ΨE . (15)



Stationary States - IV

◮ Quantum state corresponding to wavefunction (14) is known
as stationary state. (Because expectation value of energy does
not evolve in time.)

◮ (15) is known as time independent Schrödinger equation. We
shall spend most of course solving this equation for various
atomic and molecular systems.


